
Parallel Computing
Stanford CS149, Fall 2021

Why Parallelism?
Why E!ciency?

Lecture 1:

 Stanford CS149, Fall 2021

Hello!

Prof. Kayvon

Prof. Olukotun

Olivia

Yuhan Teguh

Jack

Luis

 Stanford CS149, Fall 2021

One common de"nition

A parallel computer is a collection of processing elements
that cooperate to solve problems quickly

We care about performance *
We care about e!ciency

We’re going to use multiple
processors to get it

* Note: di#erent motivation from “concurrent programming” using threads like in CS110

 Stanford CS149, Fall 2021

DEMO 1
(CS149 Fall 2021’s "rst parallel program)

 Stanford CS149, Fall 2021

Speedup

One major motivation of using parallel processing: achieve a speedup

For a given problem:

speedup(using P processors) =
execution time (using 1 processor)

execution time (using P processors)

 Stanford CS149, Fall 2021

Class observations from demo 1
▪ Communication limited the maximum speedup achieved

- In the demo, the communication was telling each other the partial sums

▪ Minimizing the cost of communication improved speedup
- Moved students (“processors”) closer together (or let them shout)

 Stanford CS149, Fall 2021

DEMO 2
(scaling up to four “processors”)

 Stanford CS149, Fall 2021

Class observations from demo 2
▪ Imbalance in work assignment limited speedup

- Some students (“processors”) ran out work to do (went idle), while others were still
working on their assigned task

▪ Improving the distribution of work improved speedup

 Stanford CS149, Fall 2021

DEMO 3
(massively parallel execution)

 Stanford CS149, Fall 2021

Class observations from demo 3
▪ The problem I just gave you has a signi"cant amount of communication compared to

computation

▪ Communication costs can dominate a parallel computation, severely limiting speedup

 Stanford CS149, Fall 2021

Course theme 1:
Designing and writing parallel programs ... that scale!

▪ Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel
2. Assigning work to processors
3. Managing communication/synchronization between the processors so that it does not limit speedup

▪ Abstractions/mechanisms for performing the above tasks
- Writing code in popular parallel programming languages

 Stanford CS149, Fall 2021

Course theme 2:
Parallel computer hardware implementation: how parallel computers work

▪ Mechanisms used to implement abstractions e!ciently
- Performance characteristics of implementations
- Design trade-o#s: performance vs. convenience vs. cost

▪ Why do I need to know about hardware?
- Because the characteristics of the machine really matter

(recall speed of communication issues in earlier demos)
- Because you care about e!ciency and performance

(you are writing parallel programs after all!)

 Stanford CS149, Fall 2021

Course theme 3:
Thinking about e!ciency

▪ FAST != EFFICIENT

▪ Just because your program runs faster on a parallel computer, it does not mean it is using the
hardware e!ciently
- Is 2x speedup on computer with 10 processors a good result?

▪ Programmer’s perspective: make use of provided machine capabilities

▪ HW designer’s perspective: choosing the right capabilities to put in system (performance/cost, cost
= silicon area?, power?, etc.)

 Stanford CS149, Fall 2021

Course logistics

 Stanford CS149, Fall 2021

Getting started
▪ The course web site

- http://cs149.stanford.edu

▪ Sign up for the course on Piazza
- https://piazza.com/stanford/fall2021/cs149/home

▪ Fill out our partner request form
- If you want us to match you with a partner

▪ Textbook
- There is no course textbook (the internet is plenty good these days),

but please see course web site for suggested references

 Stanford CS149, Fall 2021

Four programming assignments

Assignment 1: ISPC programming
on multi-core CPUs

Assignment 3: Writing a renderer
in CUDA on NVIDIA GPUs

Assignment 2:
scheduler for a task graph

Optional assignment 5:
(will boost some prior grade)

Assignment 4: parallel
large graph algorithms

on a multi-core CPU

Plus a few optional extra credit challenges… ;-)

 Stanford CS149, Fall 2021

Written assignments
▪ Approximately every two-weeks we will have a take-home written assignment

▪ Written assignments contain modi"ed versions of previous exam questions, so consider
them practice for the exam

▪ Graded on a credit/no credit basis

 Stanford CS149, Fall 2021

Commenting and contributing to lectures

The website supports commenting on a
per-slide basis

 Stanford CS149, Fall 2021

Participation (comments)
▪ You are asked to submit one well-thought-out comment per lecture

- Only two comments per week
- No precise deadline, but getting them submitted “in the same week” as the

lectures is the spirit of the participation

▪ Why do we write?
- Because writing is a way many good architects and systems designers force

themselves to think (explaining clearly and thinking clearly are highly correlated!)

▪ But take it seriously, this is your participation grade

 Stanford CS149, Fall 2021

What we are looking for in comments
▪ Try to explain the slide (as if you were trying to teach your classmate while studying for an exam)

- “The instructor said this, but if you think about it this way instead it makes much more sense... ”

▪ Explain what is confusing to you:
- “What I’m totally confused by here was...”

▪ Challenge classmates with a question
- For example, make up a question you think might be on an exam.

▪ Provide a link to an alternate explanation
- “This site has a really good description of how multi-threading works...”

▪ Mention real-world examples
- For example, describe all the parallel hardware components in the PS5

▪ Constructively respond to another student’s comment or question
- “@segfault21, are you sure that is correct? I thought that Prof. Kayvon said…”

▪ It is OKAY (and even encouraged) to address the same topic (or repeat someone else’s summary,
explanation or idea) in your own words
- “@funkysenior21’s point is that the overhead of communication...”

 Stanford CS149, Fall 2021

Grades
48% Programming assignments (4)
15% Written assignments (5)
16% Midterm assessments(2)

- Oct 14th and Nov 11th

16% Final exam
5% Asynchronous participation (comments)

Reminder: we can match you with a partner! See Piazza for our partner request form!

 Stanford CS149, Fall 2021

Why parallelism?

 Stanford CS149, Fall 2021

Some historical context: why not parallel processing?

Year

R
el

at
iv

e
C

PU
 P

er
fo

rm
an

ce

Image credit: Olukutun and Hammond, ACM Queue 2005

▪ Single-threaded CPU performance doubling ~ every 18 months
▪ Implication: working to parallelize your code was often not worth the time

- Software developer does nothing, code gets faster next year. Woot!

 Stanford CS149, Fall 2021

Until ~15 years ago: two signi"cant reasons for processor
performance improvement

1. Exploiting instruction-level parallelism (superscalar execution)

2. Increasing CPU clock frequency

 Stanford CS149, Fall 2021

What is a computer program?

 Stanford CS149, Fall 2021

Here is a program written in C

int main(int argc, char** argv) {

 int x = 1;

 for (int i=0; i<10; i++) {
 x = x + x;
 }

 printf(“%d\n”, x);

 return 0;
}

 Stanford CS149, Fall 2021

What is a program? (from a processor’s perspective)

int main(int argc, char** argv) {

 int x = 1;

 for (int i=0; i<10; i++) {
 x = x + x;
 }

 printf(“%d\n”, x);

 return 0;
}

Compile
code

_main:
100000f10: pushq %rbp
100000f11: movq %rsp, %rbp
100000f14: subq $32, %rsp
100000f18: movl $0, -4(%rbp)
100000f1f: movl %edi, -8(%rbp)
100000f22: movq %rsi, -16(%rbp)
100000f26: movl $1, -20(%rbp)
100000f2d: movl $0, -24(%rbp)
100000f34: cmpl $10, -24(%rbp)
100000f38: jge 23 <_main+0x45>
100000f3e: movl -20(%rbp), %eax
100000f41: addl -20(%rbp), %eax
100000f44: movl %eax, -20(%rbp)
100000f47: movl -24(%rbp), %eax
100000f4a: addl $1, %eax
100000f4d: movl %eax, -24(%rbp)
100000f50: jmp -33 <_main+0x24>
100000f55: leaq 58(%rip), %rdi
100000f5c: movl -20(%rbp), %esi
100000f5f: movb $0, %al
100000f61: callq 14
100000f66: xorl %esi, %esi
100000f68: movl %eax, -28(%rbp)
100000f6b: movl %esi, %eax
100000f6d: addq $32, %rsp
100000f71: popq %rbp
100000f72: rets

A program is just a list of processor instructions!

 Stanford CS149, Fall 2021

Kind of like the instructions in a
recipe for your favorite meals

Mmm, carne asada

 Stanford CS149, Fall 2021

What does a processor do?

 Stanford CS149, Fall 2021

A processor executes instructions

Execution
Context

ALU
(Execution Unit)

Professor Kayvon’s
Very Simple Processor

Registers: maintain program state: store value of
variables used as inputs and outputs to operations

Execution unit: performs the operation described by an
instruction, which may modify values in the processor’s
registers or the computer’s memory

Register 0 (R0)
Register 1 (R1)
Register 2 (R2)
Register 3 (R3)

Fetch/
Decode Determine what instruction to run next

 Stanford CS149, Fall 2021

One example instruction: add two numbers

Execution
Context

Professor Kayvon’s
Very Simple Processor

Step 1:
Processor gets next program instruction from memory
("gure out what the processor should do next)
add R0 ← R0, R1
“Please add the contents of register R0 to the contents of
register R1 and put the result of the addition into register R0”

R0: 32
R1: 64
R2: 0x#681080
R3: 0x80486412

Contents of R0 input to execution unit:
Contents of R1 input to execution unit:

Execution unit performs arithmetic, the result is:

32
64

96

Step 2:
Get operation inputs from registers

Step 3:
Perform addition operation:

ALU
(Execution Unit)

Fetch/
Decode

 Stanford CS149, Fall 2021

One example instruction: add two numbers

Execution
Context

Professor Kayvon’s
Very Simple Processor

Step 1:
Processor gets next program instruction from memory
("gure out what the processor should do next)
add R0 ← R0, R1
“Please add the contents of register R0 to the contents of
register R1 and put the result of the addition into register R0”

R0: 96
R1: 64
R2: 0x#681080
R3: 0x80486412

ALU
(Execution Unit)

Fetch/
Decode

Step 4:
Store result back to register R0

Contents of R0 input to execution unit:
Contents of R1 input to execution unit:

Execution unit performs arithmetic, the result is:

32
64

96

Step 2:
Get operation inputs from registers

Step 3:
Perform addition operation:

96

 Stanford CS149, Fall 2021

Execute program

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Execution Unit
(ALU)

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2021

Execute program

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Execution Unit
(ALU)

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2021

Execute program

Fetch/
Decode

Execution
Context

Execution Unit
(ALU)

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2021

Execute program

Fetch/
Decode

Execution
Context

ld r0, addr[r1]

mul r1, r0, r0

mul r1, r1, r0

...

...

...

...

...

...

st addr[r2], r0

Execution Unit
(ALU)

My very simple processor: executes one instruction per clock

 Stanford CS149, Fall 2021

Review of how computers work…
What is a computer program? (from a processor’s perspective)

It is a list of instructions to execute!

What is an instruction?
It describes an operation for a processor to perform.
Executing an instruction typically modi!es the computer’s state.

What do I mean when I talk about a computer’s “state”?
The values of program data, which are stored in a processor’s registers or in memory.

 Stanford CS149, Fall 2021

Lets consider a very simple piece of code
a = x*x + y*y + z*z

Assume register R0 = x, R1 = y, R2 = z

 mul R0, R0, R0
 mul R1, R1, R1
 mul R2, R2, R2
 add R0, R0, R1
 add R3, R0, R2

R3 now stores value of program variable ‘a’

Consider the following "ve instruction program:

This program has "ve instructions, so it
will take "ve clocks to execute, correct?

Can we do better?

1
2
3
4
5

 Stanford CS149, Fall 2021

What if up to two instructions can be performed at once?
a = x*x + y*y + z*z

Assume register
R0 = x, R1 = y, R2 = z

 mul R0, R0, R0
 mul R1, R1, R1
 mul R2, R2, R2
 add R0, R0, R1
 add R3, R0, R2

R3 now stores value of
program variable ‘a’

1
2
3
4
5

Volunteer 1 Volunteer 2

1

2

3

4

5

time

 Stanford CS149, Fall 2021

What about three instructions at once?
a = x*x + y*y + z*z Volunteer 1 Volunteer 2

1

2

3

4

5

Volunteer 3

time1
2
3
4
5

Assume register
R0 = x, R1 = y, R2 = z

 mul R0, R0, R0
 mul R1, R1, R1
 mul R2, R2, R2
 add R0, R0, R1
 add R3, R0, R2

R3 now stores value of
program variable ‘a’

 Stanford CS149, Fall 2021

Instruction level parallelism (ILP) example
▪ ILP = 3 a = x*x + y*y + z*z

x

+

a

+

ILP = 3

ILP = 1

ILP = 1

x

*

y y

*

z z

*

 Stanford CS149, Fall 2021

Superscalar processor execution
a = x*x + y*y + z*z

Idea #1:
Superscalar execution: processor automatically "nds *
independent instructions in an instruction sequence and
executes them in parallel on multiple execution units!

In this example: instructions 1, 2, and 3 can be executed in parallel without impacting program correctness
(on a superscalar processor that determines that the lack of dependencies exists)
But instruction 4 must be executed after instructions 1 and 2
And instruction 5 must be executed after instruction 4

Assume register
R0 = x, R1 = y, R2 = z

mul R0, R0, R0
mul R1, R1, R1
mul R2, R2, R2
add R0, R0, R1
add R3, R0, R2

1
2
3
4
5

* Or the compiler "nds independent instructions at compile time and explicitly encodes dependencies in the compiled binary.

 Stanford CS149, Fall 2021

Superscalar processor

Fetch/
Decode

1

Execution
Context

Exec
1

This processor can decode and execute up to two instructions per clock

Fetch/
Decode

2

Exec
2

Out-of-order control logic

 Stanford CS149, Fall 2021

Aside: Pentium 4

Image credit: http://ixbtlabs.com/articles/pentium4/index.html

 Stanford CS149, Fall 2021

A more complex example

a = 2
b = 4

tmp2 = a + b // 6
tmp3 = tmp2 + a // 8
tmp4 = b + b // 8
tmp5 = b * b // 16
tmp6 = tmp2 + tmp4 // 14
tmp7 = tmp5 + tmp6 // 30

if (tmp3 > 7)
 print tmp3
else
 print tmp7

00
01

02
03
04
05
06
07

08
09

10

PC Instruction

Instruction dependency graphProgram (sequence of instructions)

00 01

02

03

04

06

08

09 10

05

07

value during
execution

 Stanford CS149, Fall 2021

Diminishing returns of superscalar execution

0

1

2

3

0 4 8 12 16

Instruction issue capability of processor (instructions/clock)

Sp
ee

du
p

Most available ILP is exploited by a processor capable of issuing four instructions per clock
(Little performance bene"t from building a processor that can issue more)

Source: Culler & Singh (data from Johnson 1991)

 Stanford CS149, Fall 2021

 Stanford CS149, Fall 2021

ILP tapped out + end of frequency scaling

No further bene"t from ILP

Processor clock rate stops
increasing

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= Instruction-level parallelism (ILP)
= Power

 Stanford CS149, Fall 2021

The “power wall”
Dynamic power capacitive load × voltage2 × frequency
Static power: transistors burn power even when inactive due to leakage

Power consumed by a transistor:

High power = high heat
Power is a critical design constraint in modern processors

Intel Core i9 10900K (in desktop CPU): 95W
Apple M1 laptop: 13W

NVIDIA RTX 3080 GPU 320W

TDP

Standard microwave oven 700W

Mobile phone processor 1/2 - 2W
World’s fastest supercomputer megawatts

Source: Intel, NVIDIA, Wikipedia, Top500.org

∝

 Stanford CS149, Fall 2021

Power draw as a function of clock frequency
Dynamic power capacitive load × voltage2 × frequency
Static power: transistors burn power even when inactive due to leakage
Maximum allowed frequency determined by processor’s core voltage

∝

Image credit: “Idontcare”: posted at: http://forums.anandtech.com/showthread.php?t=2281195

 Stanford CS149, Fall 2021

Single-core performance scaling
The rate of single-instruction stream performance
scaling has decreased (almost to zero)

1. Frequency scaling limited by power
2. ILP scaling tapped out

Architects are now building faster processors by
adding more execution units that run in parallel
(Or units that are specialized for a speci"c task (like graphics, or
audio/video playback)

Software must be written to be parallel to see
performance gains. No more free lunch for
software developers!

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= ILP
= Power

 Stanford CS149, Fall 2021

Example: multi-core CPU
Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)

Core 1 Core 4Core 2 Core 3

Core 6 Core 9Core 7 Core 8

Core 5

Core 10

 Stanford CS149, Fall 2021

▪ Example: assignment 1 (coming up!)
- Running on a quad-core Intel CPU

- Four CPU cores
- AVX SIMD vector instructions + hyper-threading

- Baseline: single-threaded C program compiled with -O3
- Parallelized program that uses all parallel execution

resources on this CPU…

One thing you will learn in this course
▪ How to write code that e!ciently uses the resources in a modern multi-core CPU

~32-40x faster!

We’ll talk about these
terms next time!

 Stanford CS149, Fall 2021

Intel Xeon Phi 7290 (2016)
72 cores (1.5 Ghz)

 Stanford CS149, Fall 2021

NVIDIA Ampere GA102 GPU

17,408 fp32 multipliers organized
in 68 major processing blocks.

GeForce RTX 3080 (2020)

 Stanford CS149, Fall 2021

Supercomputing
▪ Today: combinations of multi-core CPUs + GPUs
▪ Oak Ridge National Laboratory: Summit (currently #2 supercomputer in world)

- 9,216 x 22-core IBM Power9 CPUs + 27,648 NVIDIA Volta GPUs

 Stanford CS149, Fall 2021

Mobile parallel processing

Raspberry Pi 3
Quad-core ARM A53 CPU

 Stanford CS149, Fall 2021Image Credit: Anandtech / TechInsights Inc.

Apple A13 Bionic
(in iPhone 11)

2 “big” CPU cores +
4 “small” CPU cores +

Apple-designed multi-core GPU +
Image processor +
Neural Engine for DNN acceleration +
Motion processor

Mobile parallel processing
Power constraints heavily in%uence the design of mobile systems

 Stanford CS149, Fall 2021

Parallel + specialized HW
▪ Achieving high e!ciency will be a key theme in this class

▪ We will discuss how modern systems are not only parallel, but also specialize processing
units to achieve high levels of power e!ciency

 Stanford CS149, Fall 2021

Another recent smartphone

Multi-core GPU
(3D graphics,

OpenCL data-parallel compute)

Display engine
(compresses pixels for

transfer to high-res screen)

Image Signal Processor
ASIC for processing camera

sensor pixels

Multi-core ARM CPU
4 “big cores” + 4 “little cores”

Video encode/decode ASIC

“Hexagon”
Programmable DSP
data-parallel multi-media

processing

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core
Programmable image

processor and DNN accelerator

 Stanford CS149, Fall 2021

Datacenter-scale applications

Google TPU pods

Image Credit: TechInsights Inc.

TPU = Tensor Processing Unit: specialized processor for ML computations

 Stanford CS149, Fall 2021

Summary
▪ Today, single-thread-of-control performance is improving very slowly

- To run programs signi"cantly faster, programs must utilize multiple processing elements or specialized
processing

- Which means you need to know how to write parallel code

▪ Writing parallel programs can be challenging
- Requires problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important

▪ I suspect you will "nd that modern computers have tremendously more processing power than
you might realize, if you just use it!

 Stanford CS149, Fall 2021

Welcome to CS149!
▪ Get signed up on Piazza

▪ Get signed up on the website

▪ Find yourself a partner (we will
help you)

▪ Let me know about suggested
changes to virtual lecture delivery

▪ Take your mask wearing seriously
when around others in class
activities like o!ce hours

Prof. Kayvon

Prof. Olukotun

Olivia

Yuhan Teguh

Jack

Luis

