Lecture 1:

Why Parallelism?
Why Efficiency?

Parallel Computing
Stanford (5149, Fall 2021

Jack

Luis

Prof. OIukotun

Stanford (5149, Fall 2021

One common definition

A parallel computer is a|collection of processing elements

that cooperate to solve problems|quickly

We care about performance * We're going to use multiple
We care about efficiency processors to get it

* Note: different motivation from “concurrent programming” using threads like in (5110 Stanford €5149. Eall 2021

DEMO 1

(CS149 Fall 20217’s first parallel program)

Speedup

One major motivation of using parallel processing: achieve a speedup

For a given problem:

: execution time (using 1 processor)
speedup(using P processors) =

execution time (using P processors)

Stanford (5149, Fall 2021

Class observations from demo 1

® Communication limited the maximum speedup achieved

= In the demo, the communication was telling each other the partial sums

B Minimizing the cost of communication improved speedup

- Moved students (“processors”) closer together (or let them shout)

Stanford (5149, Fall 2021

DEMO 2

(scaling up to four “processors”)

Stanford (5149, Fall 2021

Class observations from demo 2

m |mbalance in work assignment limited speedup

- Some students (“processors”) ran out work to do (went idle), while others were still
working on their assigned task

m [mproving the distribution of work improved speedup

Stanford (5149, Fall 2021

DEMO 3

(massively parallel execution)

Stanford (5149, Fall 2021

Class observations from demo 3

m The problem | just gave you has a significant amount of communication compared to
computation

m Communication costs can dominate a parallel computation, severely limiting speedup

Stanford (5149, Fall 2021

Course theme 1:
Designing and writing parallel programs ... that scale!

m Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel

2. Assigning work to processors
3. Managing communication/synchronization between the processors so that it does not limit speedup

m Abstractions/mechanisms for performing the above tasks

- Writing code in popular parallel programming languages

Stanford (5149, Fall 2021

Course theme 2:
Parallel computer hardware implementation: how parallel computers work

m Mechanisms used to implement abstractions efficiently

- Performance characteristics of implementations
- Design trade-offs: performance vs. convenience vs. cost

m Whydo | need to know about hardware?

- Because the characteristics of the machine really matter
(recall speed of communication issues in earlier demos)

- Because you care ahout efficiency and performance
(you are writing parallel programs after all!)

Stanford (5149, Fall 2021

Course theme 3:
Thinking about efficiency

m FAST !'= EFFICIENT

m Just because your program runs faster on a parallel computer, it does not mean it is using the
hardware efficiently

- Is 2x speedup on computer with 10 processors a good result?
B Programmer’s perspective: make use of provided machine capabilities

m HW designer’s perspective: choosing the right capabilities to put in system (performance/cost, cost
= silicon area?, power?, etc.)

Stanford (5149, Fall 2021

Course logistics

GEttmg started ~ FARALLEL COMPUTING

From smart phones, to multi-core CPUs and GPUs, to the world's largest supercomputers and web sites, parallel
processing is ubiquitous in modern computing. The goal of this course is to provide a deep understanding of the
fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well

[]
. as to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good
parallel programs requires an understanding of key machine performance characteristics, this course will cover both

parallel hardware and software design.

- http://cs149.stanford.edu pasic Inf

Tues/Thurs 3:15-4:45pm
All lectures are virtual
Instructors: Kayvon Fatahalian and Kunle Olukotun

See the course info page for more info on policies and logistics.

Fall 2021 Schedule

Sep 21 Why Parallelism? Why Efficiency?

Challenges of parallelizing code, motivations for parallel chips, processor basics

m Sign up for the course on Piazza
- https://piazza.com/stanford/fall2021/cs149/home

Sep 28 Parallel Programming Abstractions
Ways of thinking about parallel programs, and their corresponding hardware implementations, ISPC programming

Sep 30 Parallel Programming Basics
Thought process of parallelizing a program in data parallel and shared address space models

Oct 05 Performance Optimization I: Work Distribution and Scheduling
Achieving good work distribution while minimizing overhead, scheduling Cilk programs with work stealing

o Oct 07 Performance Optimization II: Locality, Communication, and Contention
. I o u o u r a r n e r re u e s o r m Message passing, async vs. blocking sends/receives, pipelining, increasing arithmetic intensity, avoiding contention

Oct 12 GPU architecture and CUDA Programming
CUDA programming abstractions, and how they are implemented on modern GPUs

Oct 14 Data-Parallel Thinking

- If t t t h o t h t Data-parallel operations like map, reduce, scan, prefix sum, groupByKey
yo u wa n u s o m a c yo u WI a pa r n e r Oct 19 Distributed Computing Using Spark

Producer-consumer locality, RDD abstraction, Spark implementation and scheduling

Oct 21 Cache Coherence
Definition of memory coherence, invalidation-based coherence using MSI and MESI, false sharing

Oct 26 Memory Consistency + Implementation Synchronization
Consistency vs. coherence, relaxed consistency models and their motivation, acquire/release semantics, implementing
locks and atomic operations

B Textbook

- Thereis no course textbook (the internet is plenty good these days),
but please see course web site for suggested references

Stanford (5149, Fall 2021

Four programming assignments

Task Queue

-~ @@@@@@@@© — O _l
fread — [O][O][O]|:||O]|O

Completed Tasks \
~[@@@© «— O

Assignment 1: ISPC programming Assignment 2:
on multi-core (PUs scheduler for a task graph

Assignment 3: Writing a renderer Assignment 4: parallel Optional assignment 5:
in CUDA on NVIDIA GPUs large graph algorithms (will boost some prior grade)
on a multi-core (PU

Plus a few optional extra credit challenges... ;-)
Stanford (5149, Fall 2021

Written assignments

m Approximately every two-weeks we will have a take-home written assignment

m Written assignments contain modified versions of previous exam questions, so consider
them practice for the exam

B Graded on a credit/no credit basis

Stanford (5149, Fall 2021

Commenting and contributing to lectures

Why Parallelism? Why Efficiency?

Instruction level parallelism (ILP)

m Processors did in fact leverage parallel execution to make
programs run faster, it was just invisible to the programmer

® Instruction level parallelism (ILP)

= Idea: Instructions must appear to be executed in
program order. BUT independent instructions
can be executed simultaneously by a processor
without impacting program correctness

- Superscalar execution: processor dynamically
finds independent instructions in an instruction
sequence and executes them in parallel

Previous | Next --- Slide 30 of 48

mul
mul
st

add
add

o
ri,
r,

ro,
rl,

Dependent instructions

ro, ro <
ri, rl <%
mem[r2] a—1

ro, r3 <%
rd, r5 <

Independent instructions

Stanford (5149, Winter 2019

Back to Lecture Thumbnails

rrastogi

kayvonf

void

The website supports commentingona
per-slide basis

It is computationally expensive for the processor to determine dependencies between
instructions. The following PPT (slides 9/10) provides an example of how the number of
checks grows with the number of instructions that are simultaneously dispatched:
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f15/www/lectures/11-superscalar-
pipelining.pdf

This additional cost is likely one of the predominant reasons that ILP has plateaued at 4
simultaneous instructions. To circumvent this issue, architects have tried to force the
compiler to solve the dependency issue using VLIW (very long instruction word). To
summarize VLIW, if a processor contains 5 independent execution units, the compiler will
have 5 operations in the "very long instruction word" that the processor will map to the 5
execution units: https://en.wikipedia.org/wiki/Very_long_instruction_word. This way
dependency checking is the responsibility of software and not hardware.

| am not sure if VLIW has helped significantly pushed the four simultaneous instruction
threshold though. If somebody knows, please share.

Question: The key phrase on this slide is that a processor must execute instructions in a
manner "appears" as if they were executed in program order. This is a key idea in this class.

What is program order?

And what does it mean for the results of a program's execution to appear as if instructions
were executed in program order?

And finally... Why is the program order guarantee a useful one? (What if the results of
execution were inconsistent with the results that would be obtained if the instructions were
executed in program order?)

And what does it mean for the results of a program's execution to appear as if instructions
were executed in program order?

A programmer might write something like the code below.

X =a+b
print(x)
y=c+d
print(y)

Stanford (5149, Fall 2021

Participation (comments)

m You are asked to submit one well-thought-out comment per lecture

- Only two comments per week

- No precise deadline, but getting them submitted “in the same week” as the
lectures is the spirit of the participation

m Why do we write?

- Because writing is a way many good architects and systems designers force
themselves to think (explaining clearly and thinking clearly are highly correlated!)

m But take it seriously, this is your participation grade

Stanford (5149, Fall 2021

What we are looking for in comments

Try to explain the slide (as if you were trying to teach your classmate while studying for an exam)
- “The instructor said this, but if you think about it this way instead it makes much more sense...”

Explain what is confusing to you:
- “What I'm totally confused by here was...”

Challenge classmates with a question
- For example, make up a question you think might be on an exam.

Provide a link to an alternate explanation
- “This site has a really good description of how multi-threading works...”

Mention real-world examples
- For example, describe all the parallel hardware components in the PS5

Constructively respond to another student’s comment or question

- “@segfault21, are you sure that is correct? | thought that Prof. Kayvon said..."

It is OKAY (and even encouraged) to address the same topic (or repeat someone else’s summary,

explanation or idea) in your own words
- “@funkysenior21’s point is that the overhead of communication...”

Stanford (5149, Fall 2021

Grades

48% Programming assignments (4)
15% Written assignments (5)

16% Midterm assessments(2)
= (Oct 14th and Nov 11th

16% Final exam
5% Asynchronous participation (comments)

Reminder: we can match you with a partner! See Piazza for our partner request form!

Stanford (5149, Fall 2021

Why parallelism?

Some historical context: why not parallel processing?

B Single-threaded CPU performance doubling ~ every 18 months

® [mplication: working to parallelize your code was often not worth the time
- Software developer does nothing, code gets faster next year. Woot!

10000.00
% 1000.00 5 ~
= .
£ 100.00 P
0 g *°°®
> o o
0 @
O 10.00 B
o ® o
© . @
O ®
o
100 —————
0.10

| | | | | | | | | |
1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Year

Image credit: Olukutun and Hammond, ACM Queue 2005 Stanford (5149, Fall 2021

Until ~15 years ago: two significant reasons for processor
performance improvement

1. Exploiting instruction-level parallelism (superscalar execution)

2. Increasing CPU clock frequency

Stanford (5149, Fall 2021

What is a computer program?

Here Is a program written in C

int main(int argc, char** argv) {
int x = 1;
for (int 1=0; i<10; i++) {
X = X + X;
}
printf(“%d\n”, x);

return 0;

Stanford (5149, Fall 2021

What is a program? (from a processor’s perspective)

A program is just a list of processor instructions!

int main(int argc, char** argv) {

int x = 1;
for (int 1=0; i<10;

X = X + X3

}
printf(“%d\n”, x);

return 9;

i++) {

_main:

100000110
100000111 :
100000114 :
100000118
100000f1f:
100000122 :
100000126
100000f2d:
100000134 :
100000138 :
100000f3e:
100000141 :
100000144 :
100000147 :
100000f4a:
100000f4d:
100000150
100000155
100000f5c:
100000f5f :
100000161 :
100000166 :
100000168 :
100000f6b:
100000f6d:
100000171 :
100000172 :

pushq %rbp

movq %rsp, srbp

subg $32, %rsp

movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movl $1, -20(%rbp)
movl $0, -24(%rbp)
cmpl $10, -24(%rbp)
jge 23 <_main+0x45>
movl -20(%rbp), Z%eax
addl -20(%rbp), Z%eax
movl %eax, -20(%rbp)
movl -24(%rbp), %eax
addl $1, %eax

movl %eax, -24(%rbp)
jmp -33 <_main+0x24>
leaq 58(%rip), %rdi
movl -20(%rbp), Z%esi
movb $0, %al

callqg 14

xorl %esi, %esi

movl %eax, -28(%rbp)
movl %esi, %eax

addq $32, %rsp

popq %rbp

rets

Stanford (5149, Fall 2021

Kind of like the instructionsin a
recipe for your favorite meals

Mmm, carne asada

Instructions

1. In a large mixing bowl combine orange juice, olive oil, cilantro, lime juice,
lemon juice, white wine vinegar, cumin, salt and pepper, jalapeno, and garlic;
whisk until well combined.

2. Reserve 13 cup of the marinade; cover the rest and refrigerate.

3. Combine remaining marinade and steak in a large resealable freezer bag; seal
and refrigerate for at least 2 hours, or overnight.

4. Preheat grill to HIGH heat.
5. Remove steak from marinade and lightly pat dry with paper towels.

6. Add steak to the preheated grill and cook for another 6 to 8 minutes per side,
or until desired doneness. Note that flank steak tastes best when cooked
to rare or medium rare because it's a lean cut of steak.

7. Remove from heat and let rest for 10 minutes. Thinly slice steak against the
grain, garnish with reserved cilantro mixture, and serve.

,,,,,

.....

What does a processor do?

".‘Ah-.ghi"&tq.v
fw vevdive¥¥ewwl

Stanford (5149, Fall 2021

A processor executes instructions

Professor Kayvon'’s
Very Simple Processor

- <—— Determine what instruction to run next

ALU Execution unit: performs the operation described by an
(Execution Unit) | : : . : . /
instruction, which may modify values in the processor’s

registers or the computer’s memory

Register 0 (RO)

Register 1 (R1) . . P .
Register 2 (R2) «——— Registers: maintain program state: store value of

Register 3 (R3) variables used as inputs and outputs to operations

Stanford (5149, Fall 2021

Professor Kayvon's
Very Simple Processor

One example instruction: add two numbers

ALU
(Execution Unit)

: 32

: 64
: 0xff681080
: 0x80486412

Step 1:
Processor gets next program instruction from memory
(figure out what the processor should do next)

add RO « RO, Rl

“Please add the contents of register R0 to the contents of
register R1 and put the result of the addition into register R0”

Step 2:
Get operation inputs from registers
Contents of RO input to execution unit: 32

Contents of R1 input to execution unit: 64

Step 3:
Perform addition operation:
Execution unit performs arithmetic, the resultis: 96

Stanford (5149, Fall 2021

Professor Kayvon's
Very Simple Processor

One example instruction: add two numbers

ALU
(Execution Unit)

: 96

: 64
: 0xff681080
: 0x80486412

Step 1:
Processor gets next program instruction from memory
(figure out what the processor should do next)

add RO « RO, Rl

“Please add the contents of register R0 to the contents of
register R1 and put the result of the addition into register R0”

Step 2:
Get operation inputs from registers
Contents of RO input to execution unit: 32

Contents of R1 input to execution unit: 64

Step 3:
Perform addition operation:
Execution unit performs arithmetic, the resultis: 96

Step 4.
Storeresult | 96 back to register RO

Stanford (5149, Fall 2021

Execute program

My very simple processor: executes one instruction per clock

- 1d ro, addr[ri]

mul rl1, ro, ro
Execution Unit mul ri, rl, ro

(ALU)

st addr[r2], re

Stanford (5149, Fall 2021

Execute program

My very simple processor: executes one instruction per clock

mul rl1, ro, ro
Execution Unit mul ri, rl, ro

(ALU)

st addr[r2], re

Stanford (5149, Fall 2021

Execute program

My very simple processor: executes one instruction per clock

> mul ri, ro, ro

Execution Unit mul rl, rl, ro
(ALU)

st addr[r2], re

Stanford (5149, Fall 2021

Execute program

My very simple processor: executes one instruction per clock

mul rl1, ro, ro
Execution Unit >
(ALU) . e

st addr[r2], re

Stanford (5149, Fall 2021

Review of how computers work...

What is a computer program? (from a processor’s perspective)

Itis a list of instructions to execute!

What is an instruction?
It describes an operation for a processor to perform.
Executing an instruction typically modifies the computer’s state.

I 14 n 7
o

What do | mean when | talk about a computer’s “state
The values of program data, which are stored in a processor’s registers or in memory.

Stanford (5149, Fall 2021

Lets consider a very simple piece of code

d =

X*¥X + y*y + z*zZ
Consider the following five instruction program:

Assume register RO = x, R1 =y, R2 = z

mul RO, RO, RO This program has five instructions, so it
mul R1, R1, R1 .

mul R2, R2, R2 will take five clocks to execute, correct?
add RO, RO, R1

add R3, RO, R2 Can we do better?

R3 now stores value of program variable ‘a’

Stanford (5149, Fall 2021

What if up to two instructions can be performed at once?

d =

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO, RO
mul R1l, R1l, R1
mul R2, R2, R2
add RO, RO, Rl
add R3, RO, R2

R3 now stores value of
program variable ‘a’

X*¥xX + y*y + z*z

time

Volunteer 1

Volunteer 2

Stanford (5149, Fall 2021

What about three instructions at once?

d =

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO, RO
mul R1, R1, Rl
mul R2, R2, R2
add RO, RO, Rl
add R3, RO, R2

R3 now stores value of
program variable ‘a’

X*¥X + y¥*y + z*z

time

Volunteer 1

Volunteer 2

Volunteer 3

Stanford (5149, Fall 2021

Instruction level parallelism (ILP) example

m |[LP=3 a = X*x + y*y + z*z
X X 4 4 Z Z
NN N N
ILP =3 * * *
ILP =1 +
ILP =1 +

N —

Stanford (5149, Fall 2021

Superscalar processor execution

a = xX*x + y*y + z*z

Assume register
RO = x, R1 =y, R2 = z

mul RO, RO,
mul R1, R1,
mul R2, R2,
add RO, RO,
add R3, RO,

RO
R1
R2
R1
R2

|dea #1:

Superscalar execution: processor automatically finds *
independent instructions in an instruction sequence and
executes them in parallel on multiple execution units!

In this example: instructions 1, 2, and 3 can be executed in parallel without impacting program correctness
(on a superscalar processor that determines that the lack of dependencies exists)

But instruction 4 must be executed after instructions 1 and 2

And instruction 5 must be executed after instruction 4

* Or the compiler finds independent instructions at compile time and explicitly encodes dependencies in the compiled binary.

Stanford (5149, Fall 2021

Superscalar processor

This processor can decode and execute up to two instructions per clock

Exec Exec
1 2

Stanford (5149, Fall 2021

Aside: Pentium 4

Image credit: http://ixbtlabs.com/articles/pentium4/index.html

System Bus (External

L2 Cache

1 Cache Bus

Bus Interface Unit

X

v .

|
Instruction Fetch Unit | Instruction Cache (L1) h |
Memory
Reorder
Buffer
Complex)
Instuction Instuction Instuction _
Decoder Decoder Decoder Microcode From
Instruction |ntegef
; & Sequencer Unit
Register Alias Table
) 4
_ Retirement
Retirement Unit Register File Data Cache
| = S (Intel Arch. Unit (L1)
1 Reorder Buffer (Instruction Pool) Registers)
v f 1
Reservation Station
'y
SIMD FP integer Integer Memory
Unit Point Unit Uergt Uer?: Interface
(FPU) (FPU) Unit
 J ¥

Internal Data-Results Buses

Stanford (5149, Fall 2021

A more complex example

Program (sequence of instructions) Instruction dependency graph
PC Instruction 00 01
value during
00 a = 2 . l/l\
o1 | b = 4 execution
‘(02 04 05
2 | tmp2 = a + b // 6
03 | tmp3 = tmp2 + a /] 8 i\\\\‘\\,l
04 | tmpd = b + b // 8 03 06
5 | tmp5 = b * b // 16
96 | tmp6 = tmp2 + tmpd // 14 l i
97 | tmp7 = tmp5 + tmp6 // 30 08 07
@8 | if (tmp3 > 7) I‘\\\\\\‘l
09 print tmp3
else 09 10
10 print tmp7

Stanford (5149, Fall 2021

Diminishing returns of superscalar execution

Most available ILP is exploited by a processor capable of issuing four instructions per clock
(Little performance benefit from building a processor that can issue more)

0 4 8 12 16
Instruction issue capability of processor (instructions/clock)

Source: Culler & Singh (data from Johnson 1991) Stanford 5149, Fall 2021

Moore’s Law: The number of transistors on microchips doubles every two years [\

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing — such as processing speed or the price of computers.

Transistor count

50,000,000,000 GC2IPU @AMD Epyc Rome
72-core Xeon Phj Centrig 2400 © © AWS Graviton2
i i Sg/\RtC 2\147 032 core AMD Epyc
Z orage Controller Apple A12X Bionic
10,000,000,000 SR b i | \° mlﬂécgnl Kiin 99056
(iPhor r
5,000,000,000 o Ml R o o8 8 5 . QAMD Ryzen 7 3700X
19 POWERS = " HiSilicon Kirin 710
8-core Xeon NehalemCOEI;\ glcg) clore CorSe % Bi'mdwgég
ualcomm Snapdragon
. corséxltg%ﬁl%(eon 74OO° 8 8 Dual-core + GPU IFLI)S Cégre i7 Broadwell-U
a4 Quad-core + GPU GT2 Core i7 Skylake K
1,000,000,000 N Pentium D Presler WERS g & 8 o Quwd core + GPU Core i7 Haswell
Itanium 2 with © ° Apple A7 (dual-core ARM64 "mobile SoC")
9 MB f Core i7 (Quad)
SOO’OOO’OOO cacweo\ AMD K10 quad- core 2M 1.3

ltanium 2 Madison 6M €p

Pentium D Smithfield< Core 2.Duo Conroe
Itanium 2 McKinley €p Cell @Core 2 Duo Wolfdale 3M

Pentium 4 Prescott-2M €p V\QCore 2 Duo Allendale

100,000,000 . AMDKS® & Pentium 4 Cedar Mill

Pentium 4 Prescott

SO’OOO’OOO Pentium 4 Northwoodo ©Barton

Pentium 4 Willamette €p °Pent1um Il Tualatin

g OCOIG 2 Duo Wolfdale

QAtom

Pentium |l Mobile Dixon

AMD K7 € Pentium Il Coppermine
AMD Ké6-IlI

Q@ ARM Cortex-A9

000000 S ¥

S’OOO’OOO Pentium Pro° Pegﬁu%” 5 el

Klamath
Pentium° OAM K5
SA-110
Intel 804864
1,000,000 nte o .00
TI Expl 32-bit
AR SPRE e .

Intel 8038 Intel
r @ BiYe @ARMS
Motorola é8OZO° o

DEC WRL
100,000 M o |nte|80286 MultiTitan AgM
50,000 e © Intel 80186 kil
Intel 8084€p € Intel 8088 QARM 2 AF& 6
:ARMl
Motorola
10,000 15 1000 zilog 780 T éSCBléN[\é%r\&é
5000 © roazeoe & a0 6502
Intel 8008 a’” el 8080
A4 Moté Lot 245%3 Technology
W T«
1,000
Ak o a8 ao o8 ol o o B 80 ol oF of oP P ok o D o N Kk N A0 g0 g
SUBESCES S O CE OEEOE E OEE OE EE ER C

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world's largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser. Stanford (5149, Fall 2021

ILP tapped out + end of frequency scaling

10,000,000

1,000,000

(sources: Intel, Wikipedia, K. Olukotun)

Dual-Core Itanium 2

Intel CPU Trends

100,000

10,000

1,000

100

10

0

B =Transistor density
@® =Clock frequency

®eo A =Power

® =Instruction-level parallelism (ILP)

Processor clock rate stops
increasing

No further benefit from ILP

1970 1975 1980 1985 1990 1995 2000

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

2005

2010

Stanford (5149, Fall 2021

III

The “power wal

Power consumed by a transistor:
Dynamic power o< capacitive load X voltage? x frequency

Static power: transistors burn power even when inactive due to leakage

High power = high heat
Power is a critical design constraint in modern processors

TDP
Apple M1 laptop: 13W
Intel Core i9 10900K (in desktop CPU): 95W
NVIDIA RTX 3080 GPU 320W
Mobile phone processor 1/,-2W

World’s fastest supercomputer megawatts

Standard microwave oven 700W

Source: Intel, NVIDIA, Wikipedia, Top500.0rg Stanford (5149, Fall 2021

Power draw as a function of clock frequency

Dynamic power « capacitive load X voltage? x frequency
Static power: transistors burn power even when inactive due to leakage
Maximum allowed frequency determined by processor’s core voltage

CPU Power Consumption
i7-2600Kvs. i7-3770K

250
B 17-3770K Dynamic Power
- W i7-3770K Static Power
200 '
g B i7-2600K Dynamic Power /
=
'§, @ i7-2600K Static Power i 2
E 150 F
P 2 / '
S -
¢ 100 |
3
&
-
Q. :
Y 50 i |
0 B O
4.8

Clockspeed (GHz) |dontcare

Image credit: “Idontcare”: posted at: http://forums.anandtech.com/showthread.php?t=2281195 Stanford (5149, Fall 2021

Single-core performance scaling

The rate of single-instruction stream performance

scaling has decreased (almost to zero) .

Intel CPU Trends :

(sources: Intel, Wikipedia, K. Olukotun)

10,000,000

1. Frequency scaling limited by power 100,000

2. ILP scaling tapped out

10,000

Architects are now building faster processors by 1000
adding more execution units that run in parallel

(Or units that are specialized for a specific task (like graphics, or 100
audio/video playback)

10

Software must be written to be parallel to see

B =Transistor density

performance gains. No more free lunch for e . S atemn
A =P
software developers! ¢oo A =Pouer

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005 Stanford CS149, Fall 2021

Example: multi-core CPU

Intel “Comet Lake” 10th Generation Core i9 10-core CPU (2020)

Bl Coré 4 HH

IH

H”:::i Core 10 ‘

Stanford (5149, Fall 2021

One thing you will learn in this course

m How to write code that efficiently uses the resources in a modern multi-core CPU

B Example: assignment 1 (coming up!
P J (9 P) We'll talk about these

= Running on a quad-core Intel CPU :
terms next time!
- Four CPU cores /

= AVX'SIMD vector instructions + hyper-threading
- Baseline: single-threaded C program compiled with -03

- Parallelized program that uses all parallel execution
resources on this CPU...

~32-40x faster!

Stanford (5149, Fall 2021

17290 (2016)

Intel Xeon Ph

5 Ghz)

72 cores (1

B e

T imem et
1 Cegm el

Stanford (5149, Fall 2021

NVIDIA Ampere GA102 GPU

GeForce RTX 3080 (2020)

17,408 fp32 multipliers organized
in 68 major processing blocks.

Stanford (5149, Fall 2021

Supercomputing

m Today: combinations of multi-core CPUs + GPUs

m (Oak Ridge National Laboratory: Summit (currently #2 supercomputer in world)
- 9,216 x 22-core IBM Power9 CPUs + 27,648 NVIDIA Volta GPUs

‘Wi . w
L/ Q - N
pr=——= ~ _
g - .

Stanford (5149, Fall 2021

Mobile parallel processing

Raspberry Pi

Quad-core ARM A53 CPU

Stanford (5149, Fall 2021

Mobile parallel processing

Power constraints heavily influence the design of mobile systems

Apple A13 Bionic
(iniPhone 11)

2 “big” CPU cores +
4 “small” CPU cores +

Apple-designed multi-core GPU +
Image processor +

Neural Engine for DNN acceleration +
Motion processor

Image Credit: Anandtech / Techinsights Inc.

Stanford (5149, Fall 2021

Parallel + specialized HW

m Achieving high efficiency will be a key theme in this class

m We will discuss how modern systems are not only parallel, but also specialize processing
units to achieve high levels of power efficiency

Stanford (5149, Fall 2021

Another recent smartphone

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

|:""HE‘§!' v i ' .

: : F;‘z.:;«:;ﬁ.u e

L ee—

Vlsual PIXEI co re ”‘jt""‘ ot I|PUJOBIQCR
- BwPU | IPU
Programmableimage | | “iSSaoN b

processor and DNN accelerator = | Fiuuri
mef Cored . Core 3

IPU | IPU
bt Core6 | Coreb5
e ;,. il
Seasll v IPU L IPY,
X% . sxl Core8 | Core7!
S S i

“Hexagon”
Programmable DSP

Snapdragon

data-parallel multi-media [ERRSAALRAL L Unit (GPU)
prOCESSing ‘ . Wi-Fi Proc[:i::::lagyUnil Proc:si:i:: Unit s

Hexagon DSP

. HVX All-Wa
Image Signal Processor § Ao
ASIC for processing camera [§ Ac?:;i?::;i 3
sensor pixels

Qualcomm®

|Zat™ Location

Adreno 540

Graphics Processing

(DPU) (VPU)

Qualcomm

Spectra 180
Camera

Kryo 280 CPU

Qualcomm

Haven Security

‘4 1l 8:00

JIRRERWith Layla in 307 inleee

Multi-core GPU

(3D graphics,
Open(CL data-parallel compute)

 Video encode/decode ASIC

- Display engine
(compresses pixels for
transfer to high-res screen)

~ Multi-core ARM CPU

4 “big cores” + 4 “little cores”

Stanford (5149, Fall 2021

. T e e e N N ' e\ { _) yrm
2 N PR S Y el r— ey NS S py \ T QWBER
-s.-p‘np-\—m— . ’ A . L LLE _ H

= "ll ;

s
5

iy

= —:qzaat\'}«f“ =

| i

S w— ,“

77377

y////.

!

| —

s — 3 L -
TR e e

g S m— ~ v -
L g — w—
—

))) w))) cnd)) s cund

=@

: g
=
) P

“ e

LY

S PREIRESE o

(xiﬂm.
ewmls)mm rjg.,_-‘ ok - 'A R (2

* ‘(f‘tt mi - \‘tmsﬂ:§

'f;!"'ﬁﬂi’”ﬁ“*;’lx‘**“!t /}‘ ¢l | %\ I t%(*x “&\“ EE §$= '

Jﬂt e R\\\Y‘F "5‘&”?!? i

)—a\s \ N~ x'nj_

2 °

! &
D 4@,&2}? “Wj,x A . L..L:. '

Google TPU pm;
1 EU=S1ensorErocessing unitsspecialized processorioriv icomputdations
- Image Credit: Techinsights Inc.

Summary

m Today, single-thread-of-control performance is improving very slowly

- To run programs significantly faster, programs must utilize multiple processing elements or specialized
processing

- Which means you need to know how to write parallel code

m Writing parallel programs can be challenging

- Requires problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important

m | suspect you will find that modern computers have tremendously more processing power than
you might realize, if you just use it!

Stanford (5149, Fall 2021

Welcome to (5149!

B Getsigned up on Piazza

B Getsigned up on the website

= Find yourself a partner (we will
help you)

m Let me know about suggested
changes to virtual lecture delivery

m Take your mask wearing seriously
when around others in class
activities like office hours

rb OIukotun

Stanford (5149, Fall 2021

