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Review
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REVIEW 
HOW IT ALL FITS TOGETHER: 

superscalar execution, 
SIMD execution, 

multi-core execution, 
and hardware multi-threading
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Running code on a simple processor

void sinx(int N, int terms, float* x, float* y) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      y[i] = value; 

   } 

}

ld   r0, addr[r1] 

mul  r1, r0, r0 

add  r2, r0, r0 

mul  r3, r1, r2 

... 

... 

... 

... 

... 

st   addr[r2], r0

Compiled instruction stream 
(scalar instructions)

C program source

compiler
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Running code on a simple processor

Fetch/ 
Decode

Execution 
Context 

(HW thread)

ALU 
(Execution unit)

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

ld   r0, addr[r1] 

mul  r1, r0, r0 

add  r2, r0, r0 

mul  r3, r1, r2 

... 

... 

... 

... 

... 

st   addr[r2], r0

Instruction stream

Single core processor, single-threaded core. 
Can run one scalar instruction per clock
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Superscalar core

Fetch/ 
Decode

Execution 
Context 

(HW thread)

ALU

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

Instruction stream

ld   r0, addr[r1] 

mul  r1, r0, r0 

add  r2, r0, r0 

mul  r3, r1, r2 

... 

... 

... 

... 

... 

st   addr[r2], r0

Fetch/ 
Decode

ALU

Single core processor, single-threaded core. 
Two-way superscalar core: 

can run up to two independent scalar instructions 
per clock from one instruction stream (one hardware thread)

instruction selection



 Stanford CS149, Fall 2021

SIMD execution capability

Execution 
Context 

(HW thread)

Data 
Cache

Memory

V0
V1
V2
V3

V4
V5
V6
V7

PC

Instruction stream 
(now with vector instructions)

vector_ld   v0, vector_addr[r1] 

vector_mul  v1, v0, v0 

vector_add  v2, v0, v0 

vector_mul  v3, v1, v2 

... 

... 

... 

... 

... 

vector_st   addr[r2], v0

Single core processor, single-threaded core. 
can run one 8-wide SIMD vector instruction from 

one instruction stream

Fetch/ 
Decode

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)
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Heterogeneous superscalar (scalar + SIMD)

Execution 
Context 

(HW thread)

Data 
Cache

Memory

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream

Single core processor, single-threaded core. 
Two-way superscalar core: 

can run up to two independent instructions per clock from one 
instruction stream, provided one is scalar and the other is vector

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

vector_ld   v0, vector_addr[r1] 

vector_mul  v1, v0, v0 

add         r2, r1, r0                 

vector_add  v2, v0, v0 

vector_mul  v3, v1, v2... 

... 

... 

... 

...  

vector_st   addr[r2], v0

(scalar ALU)
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Multi-threaded core

Fetch/ 
Decode

Execution 
Context 0 
(HW thread)

ALU 
(Execution unit)

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

Instruction stream 0

Single core processor, multi-threaded core (2 threads). 
Can run one scalar instruction per clock from 

one of the instruction streams (hardware threads)

Execution 
Context 1 
(HW thread)

R0
R1
R2
R3

R4
R5
R6
R7

PC

Instruction stream 1

ld   r0, addr[r1] 
sub  r1, r0, r0 
add  r2, r1, r0 
mul  r5, r1, r0 
... 
... 
... 
... 
... 
st   addr[r2], r0

PC

ld   r0, addr[r1] 
mul  r1, r0, r0 
add  r2, r0, r0 
mul  r3, r1, r2 
... 
... 
... 
... 
... 
st   addr[r2], r0

Note: threads can be running completely di!erent instruction 
streams (and be at di!erent points in these streams) 

Execution of hardware threads is interleaved in time.
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Multi-threaded, superscalar core

Execution 
Context 0 
(HW thread)

Data 
Cache

Memory

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream 0

Single core processor, multi-threaded core (2 threads). 
Two-way superscalar core:  in this example, my core 

is capable of running up to two independent instructions 
per clock, provided one is scalar and the other is vector

Execution 
Context 1 
(HW thread)

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream 1

vector_ld   v0, addr[r1] 
sub         r1, r0, r0 
vector_add  v2, v0, v0 
mul         r5, r1, r0 
... 
... 
... 
... 
... 
rect        addr[r2], v0

Note: threads can be running completely di!erent instruction 
streams (and be at di!erent points in these streams) 

Execution of hardware threads is interleaved in time.

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

(scalar ALU)

vector_ld   v0, addr[r1] 
vector_mul  v1, v0, v0 
vector_add  v2, v1, v1 
mul         r2, r1, r1 
... 
... 
... 
... 
... 
vector_st   addr[r2], v0

In this example: two instructions from the same thread. 
(Superscalar execution, interleaved multi-threading)
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Multi-threaded, superscalar core

Execution 
Context 0 
(HW thread)

Data 
Cache

Memory

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream 0

Execution 
Context 1 
(HW thread)

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream 1

Note: threads can be running completely di!erent instruction 
streams (and be at di!erent points in these streams) 

Simultaneous execution of two hardware threads.

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

(scalar ALU)

vector_ld   v0, addr[r1] 
vector_mul  v1, v0, v0 
vector_add  v2, v1, v1 
mul         r2, r1, r1 
... 
... 
... 
... 
... 
vector_st   addr[r2], v0

vector_ld   v0, addr[r1] 
sub         r1, r0, r0 
vector_add  v2, v0, v0 
mul         r5, r1, r0 
... 
... 
... 
... 
... 
rect        addr[r2], v0

Single core processor, multi-threaded core (2 threads). 
Two-way superscalar core:  in this example, my core 

is capable of running up to two independent instructions 
per clock, provided one is scalar and the other is vector

In this example: two instruction from di!erent threads. 
(simultaneous multi-threading)
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Multi-threaded, superscalar core

Execution 
Context 0

Data 
Cache

Memory

Instruction stream 0

Single core processor, multi-threaded core (4 threads). 
Two-way superscalar core:  

can run up to two independent instructions 
per clock from any of the threads, 

provided one is scalar and the other is vector

Instruction stream 1
vector_ld   v0, addr[r1] 
sub         r1, r0, r0 
vector_add  v2, v0, v0 
mul         r5, r1, r0 
... 
... 
... 
... 
... 
rect        addr[r2], v0

Execution of hardware threads may or may not be interleaved in time 
(instructions from di!erent threads may be running simultaneously)

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

(scalar ALU)

vector_ld   v0, addr[r1] 
vector_mul  v1, v0, v0 
vector_add  v2, v1, v1 
mul         r2, r1, r1 
... 
... 
... 
... 
... 
vector_st   addr[r2], v0

Instruction stream 3Instruction stream 2
vector_ld   v0, addr[r1] 
vector_mul  v2, v0, v0 
mul         r3, r0, r0 
sub         r1, r0, r3 ... 
... 
... 
... 
... 
rect        addr[r2], v0

Execution 
Context 1

Execution 
Context 2

Execution 
Context 3

vector_ld   v0, addr[r1] 
sub         r1, r0, r0 
vector_add  v1, v0, v0 
vector_add  v2, v0, v1 
mul         r2, r1, r1 
... 
... 
... 
... 
rect        addr[r2], v0
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Multi-core, with multi-threaded, superscalar cores
Memory

Dual-core processor, multi-threaded cores (4 threads/core). 
Two-way superscalar cores:  each core can run up to two independent instructions 

per clock from any of its threads, provided one is scalar and the other is vector

Shared Data Cache

Core 0 Core 1

Instr stream 0 Instr stream 1 Instr stream 2 Instr stream 3 Instr stream 4 Instr stream 5 Instr stream 6 Instr stream 7
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Example: Intel Skylake core

Two-way multi-threaded cores (2 threads). 
Each core can run multiple independent scalar 

instructions and multiple 8-wide vector instructions 
(up to 2 vector mul or 3 vector add)  

Core 0

Execution 
Context 0

L1 Data 
Cache

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
MUL+ADD

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

scalar ALU 
FP ADD+MUL

Execution 
Context 1

ALU

scalar ALU 
FP ADD+MUL

ALU

(scalar ALU)

ALU

(scalar ALU)

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
MUL+ADD

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
ADD

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

L2 Data 
Cache

Not shown on this diagram: units for LD/ST operations 
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GPU “SIMT”  (single instruction multiple thread)

Many modern GPUs execute hardware threads 
that run instruction streams with only scalar instructions. 

GPU cores detect when di!erent hardware threads are executing the 
same instruction, and implement simultaneous execution of up to 

SIMD-width threads using SIMD ALUs. 

Here ALU 6 would be “masked o!” since thread 6 is not executing the 
same instruction as the other hardware threads. 

Execution 
Context 1

Data 
Cache

Memory

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/Decode

instruction selection

Execution 
Context 0

Execution 
Context 3

Execution 
Context 2

Execution 
Context 5

Execution 
Context 4

Execution 
Context 7

Execution 
Context 6

Instr stream 0 Instr stream 1 Instr stream 2 Instr stream 3

Instr stream 4 Instr stream 5 Instr stream 6 Instr stream 7

divergent execution
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GPUs: extreme throughput-oriented processors

“Shared” memory + L1 cache storage (128 KB)

This is one NVIDIA V100 streaming multi-processor (SM) unit

= SIMD fp32 functional unit, 
     control shared across 16 units 
     (16 x MUL-ADD per clock *)

= SIMD int functional unit, 
     control shared across 16 units 
     (16 x MUL/ADD per clock *)

= SIMD fp64 functional unit, 
     control shared across 8 units 
     (8 x MUL/ADD per clock **)

= Load/store unit

= Tensor core unit

64 KB registers 
per sub-core 

256 KB registers 
in total per SM 

Registers divided among 
(up to) 64 “warps” per SM

* one 32-wide SIMD operation every 2 clocks ** one 32-wide SIMD operation every 4 clocks

0R0 31
R1

1

R2

2

…
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R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 5

Warp 61

Warp 1
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 6

Warp 62

Warp 2
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 7

Warp 63

Warp 3

64 “warp” execution contexts per SM  

Wide SIMD: 16-wide SIMD ALUs (carry 
out 32-wide SIMD execute over 2 clocks) 

64 x 32 = up to 2048 data items 
processed concurrently per “SM” core

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode
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NVIDIA V100
There are 80 SM cores on the V100: 

That’s 163,840 pieces of data being 
processed concurrently to get 
maximal latency hiding!

L2 Cache (6 MB)

GPU memory (HBM) 
(16 GB)

900 GB/sec 
(4096 bit interface)
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The story so far…
To utilize modern parallel processors e"ciently, an application must: 

1. Have su"cient parallel work to utilize all available execution units 
(across many cores and many execution units per core) 

2. Groups of parallel work items must require the same sequences of instructions 
(to utilize SIMD execution) 

3. Expose more parallel work than processor ALUs to enable interleaving of work 
to hide memory stalls
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Thought experiment
Task: element-wise multiplication of two vectors A and B 
Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

Is this a good application to run on a modern 
throughput-oriented parallel processor? !
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NVIDIA V100
There are 80 SM cores on the V100: 

80 SM x 64 fp32 ALUs per SM = 5120 ALUs 

L2 Cache (6 MB)

GPU memory (HBM) 
(16 GB)

900 GB/sec 
(4096 bit interface)

Think about supplying all 
those ALUs with data each 
clock. "
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Understanding 
latency and bandwidth
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The school year is starting… gotta get back to Stanford
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San Francisco fog vs. South Bay sun
When it looks like this in SF It looks like this at Stanford
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Why the south bay? Great social distancing opportunities
▪ Quick plug: 

- Kayvon’s guide to local bay area hikes 
- http://graphics.stanford.edu/~kayvonf/misc/local_hikes.pdf
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Everyone wants to get to back to the South Bay!

Car’s velocity: 100 km/hr
Stanford

San 
Francisco

Distance: ~ 50 km

Latency of driving from San Francisco to Stanford: 0.5 hours

Throughput: 2 cars per hour

Assume only one car in a lane of the highway at once. 
When car on highway reaches Stanford, the next car leaves San Francisco.
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Improving throughput
Car’s velocity: 200 km/hr

StanfordSan 
Francisco

Approach 1: drive faster!  
Throughput = 4 cars per hour

Car’s velocity: 100 km/hr

Stanford

San 
Francisco

Approach 2: build more lanes! 
Throughput = 8 cars per hour (2 cars per hour per lane)
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Using the highway more e"ciently

StanfordSan 
Francisco

Cars spaced out by 1 km

Throughput: 100 cars/hr (1 car every 1/100th of hour)

Stanford
San 

Francisco

Throughput: 400 cars/hr (4 cars every 1/100th of hour)

Car’s velocity: 100 km/hr

Car’s velocity: 100 km/hr
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Terminology
▪ Memory bandwidth 

- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s

Memory

Bandwidth ~ 4 items/sec

Latency of transferring any one item: ~2 sec
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Terminology
▪ Memory bandwidth 

- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s

Memory

Bandwidth: ~ 8 items/sec

Latency of transferring any one item: ~2 sec
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Example: doing your laundry

Washer 
45 min

Dryer 
60 min

College Student 
15 min

Operation: do your laundry
1. Wash clothes 
2. Dry clothes 
3. Fold clothes 

Latency of completing 1 load of laundry = 2 hours 
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Increasing laundry throughput
Goal: maximize throughput of many loads of laundry

One approach: duplicate execution resources: 
use two washers, two dryers, and call a friend 

Latency of completing 2 loads of laundry = 2 hours 
Throughput increases by 2x: 1 load/hour 

Number of resources increased by 2x: two washers, two dryers



 Stanford CS149, Fall 2021

Pipelining
Goal: maximize throughput of doing many loads of laundry

1 hr 2 hr 3 hr 4 hr 5 hr

Latency: 1 load takes 2 hours 
Throughput: 1 load/hour 
Resources: one washer, one dryer 
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Consider a processor that can do one add per clock (+ can co-issue LD)

time 

=  Math instruction

= Occupancy of memory bus 
     (size of cache line / memory bus bandwidth)

Load 64 bytes

Add

Add

Add

Add

Load 64 bytes

Stall!

Stall!

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

=  Load instruction

Assumptions (8 clocks to transfer data) 
Up to 3 outstanding load requests.
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Rate of math instructions limited by available bandwidth

time 

=  Math instruction

= Occupancy of memory bus 
     (size of cache line / memory bus bandwidth)

=  Load instruction

Bandwidth-bound execution! 

Convince yourself that the instruction 
throughput is not impacted by memory 
latency, number of outstanding memory 
requests, etc. 

Only the memory bandwidth!!! 

(Note how the memory system is occupied 
100% of the time)
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High bandwidth memories
▪ Modern GPUs leverage high bandwidth memories located near processor 
▪ Example: 

- V100 uses HBM2 
- 900 GB/s
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Thought experiment
Task: element-wise multiplication of two vectors A and B 
Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

<1% GPU e"ciency… but still 12x faster than eight-core CPU! 
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus: ~3% e"ciency on this computation)

Three memory operations (12 bytes) for every MUL 
NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz) 
Need ~98 TB/sec of bandwidth to keep functional units busy
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This computation is 
bandwidth limited!

If processors request data at too high a rate, 
the memory system cannot keep up.

Overcoming bandwidth limits is often the most important 
challenge facing software developers targeting modern 

throughput-optimized systems.
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In modern computing, bandwidth is the critical resource
Performant parallel programs will: 

▪ Organize computation to fetch data from memory less often 
- Reuse data previously loaded by the same thread 

(temporal locality optimizations) 
- Share data across threads (inter-thread cooperation) 

▪ Favor performing additional arithmetic to storing/reloading values (the math is “free”) 

▪ Main point: programs must access memory infrequently to utilize modern processors e"ciently
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Another example: an instruction pipeline

time (clocks)

Latency: 1 instruction takes 4 cycles 
Throughput: 1 instruction per cycle 
(Yes, care must be taken to ensure program correctness when back-to-back instructions are dependent.)

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

Intel Core i7 pipeline is variable length (it depends on the instruction) ~20 stages

Four-stage instruction pipeline: 

IF = instruction fetch 
D = instruction decode + register read 
EX = execute 
WB = “write back” results to registers 

Many students have asked how a processor can complete a multiply in a clock. 
When we say a core does one operation per clock, we are referring to INSTRUCTION THROUGHPUT, NOT LATENCY.

instr 0
instr 1
instr 2
instr 3
instr 4
instr 5
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And now today’s topic…
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Pay attention!
Today’s theme is a critical idea in this course. 

And today’s theme is: 

Abstraction vs. implementation 

Con$ating abstraction with implementation is a common cause 
for confusion in this course.
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An example: 
Programming with ISPC
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ISPC
▪ Intel SPMD Program Compiler (ISPC) 
▪ SPMD: single program multiple data  

▪ http://ispc.github.com/ 

▪ A great read:  “The Story of ISPC” (by Matt Pharr) 
- https://pharr.org/matt/blog/2018/04/30/ispc-all.html
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Recall: example program from last class

void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

Compute sin(x) using Taylor expansion:   sin(x) = x - x3/3! + x5/5! - x7/7! + ... 
for each element of an array of N $oating-point numbers
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Invoking sinx()
#include “sinx.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 

  // initialize x here 

  sinx(N, terms, x, result); 

  return 0; 
}

C++ code:  main.cpp 
void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

C++ code:  sinx.cpp 

sinx()

main()

Call to sinx() 
Control transferred to sinx() func

Return from sinx() 
Control transferred back to main()
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sinx() in ISPC
export void ispc_sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assume N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

C++ code: main.cpp ISPC code: sinx.ispc

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC 
“program instances” 

All instances run ISPC code concurrently 

Each instance has its own copy of local variables 
(blue variables in code, we’ll talk about “uniform” later) 

Upon return, all instances have completed
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#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

Invoking sinx() in ISPC

Call to ispc_sinx() 
Begin executing programCount 
instances of ispc_sinx() 
(ISPC code)

Sequential execution (C code)

Sequential execution 
 (C code)

ispc_sinx() returns. 
Completion of ISPC program instances 
Resume sequential execution

0  1  2  3  4  5  6  7  

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC “program instances” 
All instances run ISPC code concurrently 
Each instance has its own copy of local variables  
Upon return, all instances have completed

In this illustration programCount = 8

main()

ispc_sinx()

C++ code: main.cpp 
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sinx() in ISPC

export void ispc_sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assumes N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

C++ code: main.cpp ISPC code: sinx.ispc

“Interleaved” assignment of array elements to program instances

#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

ISPC language keywords: 
programCount: number of simultaneously executing instances in 
the gang (uniform value) 

programIndex: id of the current instance in the gang. 
(a non-uniform value: “varying”) 

uniform: A type modi%er. All instances have the same value for this 
variable.  Its use is purely an optimization. Not needed for correctness.
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Interleaved assignment of program instances to loop iterations

10 11 12 13 14 15

“Gang” of ISPC program instances

In this illustration: gang contains eight instances: programCount = 8 

Instance 0 
(programIndex = 0)

Elements of output array (results)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex=7) 

16 17 18 19 20 21 22 230 1 8 92 3 4 5 6 7
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#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx(N, terms, x, result); 
  return 0; 
}

C++ code: main.cpp 

ISPC implements the gang abstraction using SIMD instructions 

ISPC compiler generates SIMD implementation: 
Number of instances in a gang is the SIMD width of the hardware (or a small multiple of SIMD width) 
ISPC compiler generates a C++ function binary (.o) whose body contains SIMD instructions  
C++ code links against generated object %le as usual

SPMD programming abstraction: 
Call to ISPC function spawns “gang” of ISPC “program instances” 
All instances run ISPC code simultaneously 
Upon return, all instances have completed

Call to ispc_sinx() 
Begin executing programCount 
instances of ispc_sinx() 
(ISPC code)

Sequential execution (C code)

Sequential execution (C code)

ispc_sinx() returns. 
Completion of ISPC program instances 
Resume sequential execution

0  1  2  3  4  5  6  7  

main()

ispc_sinx()
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sinx() in ISPC: version 2

export void ispc_sinx_v2( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assume N % programCount = 0 
   uniform int count = N / programCount; 
   int start = programIndex * count; 
   for (uniform int i=0; i<count; i++) 
   { 

    int idx = start + i; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (j+3) * (j+4); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

C++ code: main.cpp 
ISPC code: sinx.ispc

#include “sinx_ispc.h” 

int main(int argc, void** argv) { 
  int N = 1024; 
  int terms = 5; 
  float* x = new float[N]; 
  float* result = new float[N]; 
   
  // initialize x here 

  // execute ISPC code 
  ispc_sinx_v2(N, terms, x, result); 
  return 0; 
}

“Blocked” assignment of array elements to program instances



 Stanford CS149, Fall 2021

Blocked assignment of program instances to loop iterations

10 11 12 13 14 15

“Gang” of ISPC program instances

In this illustration: gang contains eight instances: programCount = 8 

Instance 0 
(programIndex = 0)

Elements of output array (results)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex=7) 

16 17 18 19 20 21 22 230 1 8 92 3 4 5 6 7
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Schedule: interleaved assignment
“Gang” of ISPC program instances

Gang contains four instances: programCount = 8 

0 1 2 3 7
time

A single “packed vector load” instruction (vmovaps *) e"ciently implements: 
float value = x[idx]; 
for all program instances, since the eight values are contiguous in memory 

... 
// assumes N % programCount = 0 
for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 

...

i=1

i=2

i=3

i=0

Instance 0 
(programIndex = 0)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex = 7)

4 5 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

* see _mm256_load_ps() intrinsic function
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Schedule: blocked assignment
“Gang” of ISPC program instances

Gang contains four instances: programCount = 8 

0 8 16 24
time

i=1

i=2

i=3

i=0

Instance 0 
(programIndex = 0)

Instance 1 
(programIndex = 1)

Instance 2 
(programIndex = 2)

Instance 3 
(programIndex = 3)

Instance 4 
(programIndex = 4)

Instance 5 
(programIndex = 5)

Instance 6 
(programIndex = 6)

Instance 7 
(programIndex = 7)

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

uniform int count = N / programCount; 
int start = programIndex * count; 
for (uniform int i=0; i<count; i++) { 

 int idx = start + i; 
 float value = x[idx]; 

...

float value = x[idx]; 
For all program instances now touches eight non-contiguous values in 
memory. Need “gather” instruction (vgatherdps *) to implement (gather is 
a more complex, and more costly SIMD instruction…)

32 40 48 56

* see _mm256_i32gather_ps() intrinsic function
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Raising level of abstraction with foreach
export void ispc_sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   foreach (i = 0 ... N) 
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[i] = value; 
   } 
}

#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

foreach: key ISPC language construct 

▪ foreach declares parallel loop iterations 
-Programmer says: these are the iterations the entire gang (not each 

instance) must perform 

▪ ISPC implementation assigns iterations to program instances in the gang 
- Current ISPC implementation will perform a static interleaved 

assignment (but the abstraction permits a di!erent assignment)



 Stanford CS149, Fall 2021

ISPC: abstraction vs. implementation
▪ Single program, multiple data (SPMD) programming model 

- Programmer “thinks”: running a gang is spawning programCount logical instruction streams (each with a 
di!erent value of programIndex) 

- This is the programming abstraction 
- Program is written in terms of this abstraction 

▪ Single instruction, multiple data (SIMD) implementation 
- ISPC compiler emits vector instructions (e.g., AVX2, ARM NEON) that carry out the logic performed by a ISPC gang 
- ISPC compiler handles mapping of conditional control $ow to vector instructions (by masking vector lanes, etc. 

like you do manually in assignment 1) 

▪ Semantics of ISPC can be tricky 

- SPMD abstraction + uniform values 
(allows implementation details to peek through abstraction a bit)
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SPMD programming model summary
▪ SPMD = “single program, multiple data” 
▪ De%ne one function, run multiple instances of that function in parallel on di!erent input arguments

Single thread of control

Resume single thread of control

Call SPMD function

SPMD function returns

SPMD execution: multiple instances of function 
run in parallel (multiple logical threads of control)
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ISPC tasks
▪ The ISPC gang abstraction is implemented by SIMD instructions that execute within 

on thread running on one x86 core of a CPU. 

▪ So all the code I’ve shown you in the previous slides would have executed on only one 
of the four cores of the myth machines. 

▪ ISPC contains another abstraction: a “task” that is used to achieve multi-core 
execution.  I’ll let you read up about that.
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Part 2 of today’s lecture
▪ Three parallel programming models 

- That di!er in what communication abstractions they present to the programmer 
- Programming models are important because they (1) in$uence how programmers think when writing programs 

and (2) in$uence the design of parallel hardware platforms designed to execute them e"ciently 

▪ Corresponding machine architectures 
- Abstraction presented by the hardware to low-level software 

▪ We’ll focus on di!erences in communication/synchronization
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Three programming models (abstractions)
1. Shared address space 

2. Message passing 

3. Data parallel
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Shared address space model
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Review: a program’s memory address space
▪ A computer’s memory is organized as a array of bytes 

▪ Each byte is identi%ed by its “address” in memory 
(its position in this array) 
(in this class we assume memory is byte-addressable)

“The byte stored at address 0x10 (16) has the value 128.”

“The byte stored at address 0x8 has the value 32.”

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255
0
0
0

0x1F

. . 
.

. . 
.

0

In the illustration on the right, the program’s 
memory address space is 32 bytes in size 
(so valid addresses range from 0x0 to 0x1F)
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The implementation of the linear memory address space abstraction 
on a modern computer is complex

DRAM 
(32 GB)

L3 cache 
(20 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Core 1

Core 8

L1 cache 
(32 KB)

L2 cache 
(256 KB)

The instruction “load the value stored at address X into register R0” might involve a 
complex sequence of operations by multiple data caches and access to DRAM 
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Shared address space model (abstraction)

int x = 0; 
spawn_thread(foo, &x); 

// write to address holding  
// contents of variable x 
x = 1;

void foo(int* x) { 
   
  // read from addr storing  
  // contents of variable x 
  while (x == 0) {} 
  print x; 
}

Thread 1: Thread 2:

(Pseudocode provided in a fake C-like language for brevity.)

Thread 1

x

Thread 2
Shared address space

Store to x

Load from x

(Communication operations shown in red)

Threads communicate by reading/writing to locations in a shared address space (shared variables)
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A common metaphor: 
A shared address space is 
like a bulletin board 

(Everyone can read/write)

Image credit: 
https://thetab.com/us/stanford/2016/07/28/honest-packing-list-freshman-stanford-1278
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Coordinating access to shared variables with 
synchronization 

int x = 0; 
Lock my_lock; 

spawn_thread(foo, &x, &my_lock); 

mylock.lock(); 
x++; 
mylock.unlock();

void foo(int* x, Lock* my_lock) { 
  my_lock->lock(); 
  x++; 
  my_lock->unlock(); 
   
  print(x); 
}

Thread 1: Thread 2:
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Review: why do we need mutual exclusion?
▪ Each thread executes 

- Load the value of variable x from a location in memory into register r1 
(this stores a copy of the value in memory in the register) 

- Add the contents of register r2 to register r1 
- Store the value of register r1 into the address storing the program variable x 

▪ One possible interleaving: (let starting value of x=0, r2=1) 

r1 ← x 

r1 ← r1 + r2 

X ← r1

r1 ← x 

r1 ← r1 + r2 

X ← r1

T1 T1

T1 reads value 0 

T2 reads value 0 

T1 sets value of its r1 to 1 

T2 sets value of its r1 to 1 

T1 stores 1 to address of x 

T2 stores 1 to address of x

▪ Need this set of three instructions must be “atomic”
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Mechanisms for preserving atomicity
▪ Lock/unlock mutex around a critical section

mylock.lock(); 

// critical section 

mylock.unlock();

▪ Intrinsics for hardware-supported atomic read-modify-write operations

▪ Some languages have %rst-class support for atomicity of code blocks
atomic { 

  // critical section 

}

atomicAdd(x, 10);
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Review: shared address space model
▪ Threads communicate by: 

- Reading/writing to shared variables in a shared address space 
- Inter-thread communication is implicit in memory loads/stores 

- Manipulating synchronization primitives 
- e.g., ensuring mutual exclusion via use of locks 

▪ This is a natural extension of sequential programming 
- In fact, all our discussions in class have assumed a shared address space so far!
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Hardware implementation of a shared address space
Key idea: any processor can directly reference contents of any memory location

Core
Local Cache

Core
Local Cache

Core
Local Cache

Core
Local Cache

Interconnect

Memory I/O

Core Core Core Core

Memory Memory

Core

Core

Core

Core

Memory

Core Core Core Core

Memory MemoryMemory Memory

Examples of interconnects

Memory

Shared Bus

Multi-stage network

Crossbar

* Caches (not shown) are another implementation of a shared address space (more on this in a later lecture)
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Shared address space hardware architecture
Any processor can directly reference any memory location

Intel Core i7 (quad core) 
(interconnect is a ring)Example: Intel Core i7 processor (Kaby Lake)

Core 1

Core 3 Core 4

Memory Controller

Memory

Core 2
Integrated 

GPU
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Intel’s ring interconnect
Introduced in Sandy Bridge microarchitecture

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

System Agent

Graphics

▪ Four rings 
- request 
- snoop 
- ack 
- data (32 bytes) 

▪ Six interconnect nodes: four “slices” of L3 cache + system agent 
+ graphics 

▪ Each bank of L3 connected to ring bus twice 

▪ Theoretical peak BW from cores to L3 at 3.4 GHz ~ 435 GB/sec 
- When each core is accessing its local slice

Core

Core

Core

Core
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SUN Niagara 2 (UltraSPARC T2): crossbar interconnect

Memory

Memory

Memory

Memory

L2 cache

L2 cache

L2 cache

L2 cache

Core

Core

Core

Core

Core

Core

Core

Core

Crossbar 
Switch

Eight core processor

Note area of crossbar (CCX): 
about same area as one core on chip
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KNL Mesh Interconnect 
Mesh of Rings 
� Every row and column is a (half) ring 

� YX routing: Go in Y Æ Turn Æ Go in X 

� Messages arbitrate at injection and on 
turn 

 

Cache Coherent Interconnect 
� MESIF protocol (F = Forward) 

� Distributed directory to filter snoops 

 

Three Cluster Modes 
(1) All-to-All (2) Quadrant (3) Sub-NUMA 
Clustering 

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

MCDRAM MCDRAM MCDRAM MCDRAM 

MCDRAM MCDRAM MCDRAM MCDRAM 

Intel Xeon Phi (Knights Landing)

▪ 72 cores, arranged as 6x6 mesh of tiles (2 cores/tile) 
▪ YX routing of messages: 

- Message travels in Y direction 
- “Turn” 
- Message traves in X direction
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Non-uniform memory access (NUMA)

On chip 
network

Core 1 Core 2

Core 3 Core 4

Memory Controller

Memory

Core 5 Core 6

Core 7 Core 8

Memory Controller

Memory

Example: modern multi-socket con%guration

X

The latency of accessing a memory location may be di!erent from di!erent processing cores in the system 
Bandwidth from any one location may also be di!erent to di!erent CPU cores *

* In practice, you’ll %nd NUMA behavior on a single-socket system as well (recall: di!erent cache slices are a di!erent distance from each core)
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Summary: shared address space model
▪ Communication abstraction 

- Threads read/write variables in shared address space 
- Threads manipulate synchronization primitives: locks, atomic ops, etc. 
- Logical extension of uniprocessor programming * 

▪ Requires hardware support to implement e"ciently 
- Any processor can load and store from any address 
- Can be costly to scale to large numbers of processors 

(one of the reasons why high-core count processors are expensive)

* But NUMA implementations requires reasoning about locality for performance optimization
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Message passing model of 
communication
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Message passing model (abstraction)

Thread 1 address space

Variable X

▪ Threads operate within their own private address spaces 
▪ Threads communicate by sending/receiving messages 

- send: speci%es recipient, bu!er to be transmitted, and optional message identi%er (“tag”) 
- receive: sender, speci%es bu!er to store data, and optional message identi%er 
- Sending messages is the only way to exchange data between threads 1 and 2 

- Why?

x

Thread 2 address space

Variable Y

Y

(Communication operations shown in red)

Illustration adopted from Culler, Singh, Gupta 

send(X, 2, my_msg_id) 

semantics:  send contexts of local variable X as 
message to thread 2 and tag message with the 
id “my_msg_id”

recv(Y, 1, my_msg_id) 

semantics:  receive message with id “my_msg_id” 
from thread 1 and store contents in local variable Y
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A common metaphor: snail mail
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Message passing (implementation)
▪ Hardware need not implement system-wide loads and stores to execute message passing programs (it need 

only communicate messages between nodes) 
- Can connect commodity systems together to form a large parallel machine 

(message passing is a programming model for clusters and supercomputers)

Cluster of workstations 
(In%niband network)
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The data-parallel model
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Programming models provide a way to think about the organization 
of parallel programs (by imposing structure)

▪ Shared address space: very little structure to communication 
- All threads can read and write to all shared variables 

▪ Message passing: communication is structured in the form of messages 
- All communication occurs in the form of messages 
- Communication is explicit in source code—the sends and receives) 

▪ Data parallel structure: more rigid structure to computation 
- Perform same function on elements of large collections
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Data-parallel model *
▪ Organize computation as operations on sequences of elements 

- e.g., perform same function on all elements of a sequence 

▪ A well-known modern example: NumPy: C = A + B 
(A, B, and C are vectors of same length) 

Something you’ve seen early in the lecture…

* We’ll have multiple lectures in the course about data-parallel programming and data-parallel thinking: this is just a taste
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Key data type: sequences
▪ Ordered collection of elements 
▪ For example, in a C++  like language: Sequence<T> 
▪ Scala lists: List[T]  
▪ In a functional language (like Haskell): seq T  

▪ Program can only access elements of sequence through sequence operators: 
- map, reduce, scan, shift, etc. 
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Map
▪ Higher order function (function that takes a function as an argument) that operates on sequences 
▪ Applies side-e!ect-free unary function f :: a -> b to all elements of input sequence, to produce 

output sequence of the same length 
▪ In a functional language (e.g., Haskell) 

- map :: (a -> b) -> seq a -> seq b  

▪ In C++: 
template<class InputIt, class OutputIt, class UnaryOperation> 
OutputIt transform(InputIt first1, InputIt last1, 
                   OutputIt d_first, 
                   UnaryOperation unary_op);

f f f f f f
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Parallelizing map
▪ Since f :: a -> b is a function (side-e!ect free), then applying f to all elements of 

the sequence can be done in any order without changing the output of the program 

▪ The implementation of map has $exibility to reorder/parallelize processing of elements 
of sequence however it sees %t
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Data parallelism in ISPC

// ISPC code: 
export void absolute_value( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 

     if (x[i] < 0) 
        y[i] = -x[i]; 
     else 
        y[i] = x[i]; 
 } 

}

foreach construct 

Think of loop body as a function 

Given this program, it is reasonable to think of the program as 
using foreach to “map the loop body onto each element” of the 
arrays X and Y. 

But if we want to be more precise: a sequence is not a %rst-class 
ISPC concept. It is implicitly de%ned by how the program has 
implemented array indexing logic in the foreach loop. 

(There is no operation in ISPC with the semantic: “map this code 
over all elements of this sequence”)

// main C++ code: 
const int N = 1024; 
float* x = new float[N]; 
float* y = new float[N]; 

// initialize N elements of x here 

absolute_value(N, x, y);



 Stanford CS149, Fall 2021

Data parallelism in ISPC

// ISPC code: 
export void absolute_repeat( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 

     if (x[i] < 0) 
        y[2*i] = -x[i]; 
     else 
        y[2*i] = x[i]; 
     y[2*i+1] = y[2*i]; 
 } 

}

Think of loop body as a function 

The input/output sequences being mapped over are 
implicitly de%ned by array indexing logic 

// main C++ code: 
const int N = 1024; 
float* x = new float[N/2]; 
float* y = new float[N]; 

// initialize N/2 elements of x here 

absolute_repeat(N/2, x, y);

This is also a valid ISPC program! 

It takes the absolute value of elements of x, then repeats it 
twice in the output array y  

(Less obvious how to think of this code as mapping the loop 
body onto existing sequences.)
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Data parallelism in ISPC

// ISPC code: 
export void shift_negative( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 
       if (i >= 1 && x[i] < 0) 

       y[i-1] = x[i]; 
     else 
       y[i] = x[i]; 
 } 

}

// main C++ code: 
const int N = 1024; 
float* x = new float[N]; 
float* y = new float[N]; 

// initialize N elements of x 

shift_negative(N, x, y);

The output of this program is unde%ned! 

Possible for multiple iterations of the loop body to write to same 
memory location 

Data-parallel model (foreach) provides no speci%cation of order in 
which iterations occur

Think of loop body as a function 

The input/output sequences being mapped 
over are implicitly de%ned by array indexing 
logic 
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ISPC discussion: sum “reduction”

export uniform float sumall2( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum; 
   float partial = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      partial += x[i]; 
   } 

   // from ISPC math library 
   sum = reduce_add(partial); 
    
   return sum; 
}

export uniform float sumall1( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      sum += x[i]; 
   } 
    
   return sum; 
}

Compute the sum of all array elements in parallel

sum is of type uniform float (one copy of variable for all program instances) 
x[i] is not a uniform expression (di!erent value for each program instance) 
Result: compile-time type error

Correct ISPC solution
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ISPC discussion: sum “reduction”
export uniform float sumall2( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum; 
   float partial = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      partial += x[i]; 
   } 

   // from ISPC math library 
   sum = reduce_add(partial); 
    
   return sum; 
}

Each instance accumulates a private partial sum 
(no communication) 

Partial sums are added together using the reduce_add() cross-instance 
communication primitive.  The result is the same total sum for all program 
instances (reduce_add() returns a uniform $oat) 

The ISPC code at right will execute in a manner similar to handwritten C + AVX 
intrinsics implementation below. *
float sumall2(int N, float* x) { 

  float tmp[8];  // assume 16-byte alignment 
  __mm256 partial = _mm256_broadcast_ss(0.0f); 

  for (int i=0; i<N; i+=8) 
    partial = _mm256_add_ps(partial, _mm256_load_ps(&x[i])); 

  _mm256_store_ps(tmp, partial); 

  float sum = 0.f; 
  for (int i=0; i<8; i++) 
    sum += tmp[i]; 

  return sum; 
}

* Self-test: If you understand why this implementation 
complies with the semantics of the ISPC gang abstraction, 
then you’ve got a good command of ISPC
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Summary: data-parallel model
▪ Data-parallelism is about imposing rigid program structure to facilitate simple programming 

and advanced optimizations 

▪ Basic structure: map a function onto a large collection of data 
- Functional: side-e!ect free execution 
- No communication among distinct function invocations 

(allow invocations to be scheduled in any order, including in parallel) 

▪ Other data parallel operators express more complex patterns on sequences: gather, scatter, 
reduce, scan, shift, etc. 
- This will be a topic of a later lecture 

▪ You will think in terms of data-parallel primitives often in this class, but many modern 
performance-oriented data-parallel languages do not enforce this structure in the language 
- Many languages (like ISPC, CUDA, etc.) choose $exibility/familiarity of imperative C-style syntax over the safety of a more 

functional form
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Summary
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Summary
▪ Programming models provide a way to think about the organization of parallel 

programs. 

▪ They provide abstractions that permit multiple valid implementations. 

▪ I want you to always be thinking about abstraction vs. implementation for the 
remainder of this course.


