
Parallel Computing
Stanford CS149, Fall 2021

Lecture 4:

Parallel Programming Basics

 Stanford CS149, Fall 2021

REVIEW

 Stanford CS149, Fall 2021

Quiz: reviewing ISPC abstractions
export void ispc_sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assume N % programCount = 0
 for (uniform int i=0; i<N; i+=programCount)
 {

 int idx = i + programIndex;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[idx] * x[idx];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[idx] = value;
 }
}

This is an ISPC function.

It contains two nested for loops

Consider one ISPC program instance.
Which iterations of the two loops are executed in parallel
by the ISPC program instance?

Hint: this is a trick question

Answer: none

 Stanford CS149, Fall 2021

Program instances (that run in parallel) are created when the
ispc_sinx() ispc function is called

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
ispc_sinx(N, terms, x, result);

Each *ISPC program instance* executes the code
in the function ispc_sinx serially.
(parallelism exists because there are multiple
program instances, not because of parallelism in
the code that de!nes an ispc function)

Call to ispc_sinx()
Begin executing programCount
instances of ispc_sinx()
(ISPC code)

Sequential execution (C code)

Sequential execution (C code)

ispc_sinx() returns.
Completion of ISPC program instances
Resume sequential execution

0 1 2 3 4 5 6 7

main()

ispc_sinx()

 Stanford CS149, Fall 2021

WHAT WE DIDN’T GET TO LAST TIME
Three ways of thinking about parallel computation

(Recall: abstraction vs. implementation)

 Stanford CS149, Fall 2021

Three programming models (abstractions)

1. Shared address space

2. Message passing

3. Data parallel

 Stanford CS149, Fall 2021

Shared address space model

 Stanford CS149, Fall 2021

Review: a program’s memory address space
▪ A computer’s memory is organized as a array of bytes

▪ Each byte is identi!ed by its “address” in memory
(its position in this array)
(in this class we assume memory is byte-addressable)

“The byte stored at address 0x10 (16) has the value 128.”

“The byte stored at address 0x8 has the value 32.”

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255
0
0
0

0x1F

. .
.

. .
.

0

In the illustration on the right, the program’s
memory address space is 32 bytes in size
(so valid addresses range from 0x0 to 0x1F)

 Stanford CS149, Fall 2021

The implementation of the linear memory address space abstraction
on a modern computer is complex

DRAM
(32 GB)

L3 cache
(20 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Core 1

Core 8

L1 cache
(32 KB)

L2 cache
(256 KB)

The instruction “load the value stored at address X into register R0” might involve a
complex sequence of operations by multiple data caches and access to DRAM

 Stanford CS149, Fall 2021

Shared address space model (abstraction)

int x = 0;
spawn_thread(foo, &x);

// write to address holding
// contents of variable x
x = 1;

void foo(int* x) {

 // read from addr storing
 // contents of variable x
 while (x == 0) {}
 print x;
}

Thread 1: Thread 2:

(Pseudocode provided in a fake C-like language for brevity.)

Thread 1

x

Thread 2
Shared address space

Store to x

Load from x

(Communication operations shown in red)

Threads communicate by reading/writing to locations in a shared address space (shared variables)

 Stanford CS149, Fall 2021

A common metaphor:
A shared address space is
like a bulletin board

(Everyone can read/write)

Image credit:
https://thetab.com/us/stanford/2016/07/28/honest-packing-list-freshman-stanford-1278

 Stanford CS149, Fall 2021

Coordinating access to shared variables with
synchronization

int x = 0;
Lock my_lock;

spawn_thread(foo, &x, &my_lock);

mylock.lock();
x++;
mylock.unlock();

void foo(int* x, Lock* my_lock) {
 my_lock->lock();
 x++;
 my_lock->unlock();

 print(x);
}

Thread 1: Thread 2:

 Stanford CS149, Fall 2021

Review: why do we need mutual exclusion?
▪ Each thread executes:

- Load the value of variable x from a location in memory into register r1
(this stores a copy of the value in memory in the register)

- Add the contents of register r2 to register r1
- Store the value of register r1 into the address storing the program variable x

▪ One possible interleaving: (let starting value of x=0, r2=1)

r1 ← x

r1 ← r1 + r2

X ← r1

r1 ← x

r1 ← r1 + r2

X ← r1

T1 T2
T1 reads value 0

T2 reads value 0

T1 sets value of its r1 to 1

T2 sets value of its r1 to 1

T1 stores 1 to address of x

T2 stores 1 to address of x

▪ Need this set of three instructions must be “atomic”

 Stanford CS149, Fall 2021

Examples of mechanisms for preserving atomicity
▪ Lock/unlock mutex around a critical section

mylock.lock();

// critical section

mylock.unlock();

▪ Intrinsics for hardware-supported atomic read-modify-write operations

▪ Some languages have !rst-class support for atomicity of code blocks
atomic {

 // critical section

}

atomicAdd(x, 10);

 Stanford CS149, Fall 2021

Review: shared address space model
▪ Threads communicate by:

- Reading/writing to shared variables in a shared address space
- Inter-thread communication is implicit in memory loads/stores

- Manipulating synchronization primitives
- e.g., ensuring mutual exclusion via use of locks

▪ This is a natural extension of sequential programming
- In fact, all our discussions in class have assumed a shared address space so far!

 Stanford CS149, Fall 2021

Hardware implementation of a shared address space
Key idea: any processor can directly reference contents of any memory location

Core
Local Cache

Core
Local Cache

Core
Local Cache

Core
Local Cache

Interconnect

Memory I/O

Core Core Core Core

Memory Memory

Core

Core

Core

Core

Memory

Core Core Core Core

Memory MemoryMemory Memory

Examples of interconnects

Memory

Shared Bus

Multi-stage network

Crossbar

* Caches (not shown) are another implementation of a shared address space (more on this in a later lecture)

 Stanford CS149, Fall 2021

Shared address space hardware architecture
Any processor can directly reference any memory location

Intel Core i7 (quad core)
(interconnect is a ring)Example: Intel Core i7 processor (Kaby Lake)

Core 1

Core 3 Core 4

Memory Controller

Memory

Core 2
Integrated

GPU

 Stanford CS149, Fall 2021

Intel’s ring interconnect
Introduced in Sandy Bridge microarchitecture

L3 cache slice
(2 MB)

L3 cache slice
(2 MB)

L3 cache slice
(2 MB)

L3 cache slice
(2 MB)

System Agent

Graphics

▪ Four rings: for di"erent types of messages
- request
- snoop
- ack
- data (32 bytes)

▪ Six interconnect nodes: four “slices” of L3 cache + system agent
+ graphics

▪ Each bank of L3 connected to ring bus twice

▪ Theoretical peak BW from cores to L3 at 3.4 GHz ~ 435 GB/sec
- When each core is accessing its local slice

Core

Core

Core

Core

 Stanford CS149, Fall 2021

SUN Niagara 2 (UltraSPARC T2): crossbar interconnect

Memory

Memory

Memory

Memory

L2 cache

L2 cache

L2 cache

L2 cache

Core

Core

Core

Core

Core

Core

Core

Core

Crossbar
Switch

Eight core processor

Note area of crossbar (CCX):
about same area as one core on chip

 Stanford CS149, Fall 2021

KNL Mesh Interconnect
Mesh of Rings
� Every row and column is a (half) ring

� YX routing: Go in Y Æ Turn Æ Go in X

� Messages arbitrate at injection and on
turn

Cache Coherent Interconnect
� MESIF protocol (F = Forward)

� Distributed directory to filter snoops

Three Cluster Modes
(1) All-to-All (2) Quadrant (3) Sub-NUMA
Clustering

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

Intel Xeon Phi (Knights Landing)

▪ 72 cores, arranged as 6x6 mesh of tiles (2 cores/tile)
▪ YX routing of messages:

- Message travels in Y direction
- “Turn”
- Message traves in X direction

 Stanford CS149, Fall 2021

Non-uniform memory access (NUMA)

On chip
network

Core 1 Core 2

Core 3 Core 4

Memory Controller

Memory

Core 5 Core 6

Core 7 Core 8

Memory Controller

Memory

Example: modern multi-socket con!guration

X

The latency of accessing a memory location may be di"erent from di"erent processing cores in the system
Bandwidth from any one location may also be di"erent to di"erent CPU cores *

* In practice, you’ll !nd NUMA behavior on a single-socket system as well (recall: di"erent cache slices are a di"erent distance from each core)

 Stanford CS149, Fall 2021

Summary: shared address space model
▪ Communication abstraction

- Threads read/write variables in shared address space
- Threads manipulate synchronization primitives: locks, atomic ops, etc.
- Logical extension of uniprocessor programming *

▪ Requires hardware support to implement e#ciently
- Any processor can load and store from any address
- Can be costly to scale to large numbers of processors

(one of the reasons why high-core count processors are expensive)

* But NUMA implementations require reasoning about locality for performance optimization

 Stanford CS149, Fall 2021

Message passing model of
communication

 Stanford CS149, Fall 2021

Message passing model (abstraction)

Thread 1 address space

Variable X

▪ Threads operate within their own private address spaces
▪ Threads communicate by sending/receiving messages

- send: speci!es recipient, bu"er to be transmitted, and optional message identi!er (“tag”)
- receive: sender, speci!es bu"er to store data, and optional message identi!er
- Sending messages is the only way to exchange data between threads 1 and 2

- Why?

x

Thread 2 address space

Variable Y

Y

(Communication operations shown in red)

Illustration adopted from Culler, Singh, Gupta

send(X, 2, my_msg_id)

semantics: send contexts of local variable X as
message to thread 2 and tag message with the
id “my_msg_id”

recv(Y, 1, my_msg_id)

semantics: receive message with id “my_msg_id”
from thread 1 and store contents in local variable Y

 Stanford CS149, Fall 2021

A common metaphor: snail mail

 Stanford CS149, Fall 2021

Message passing (implementation)
▪ Hardware need not implement system-wide loads and stores to execute message passing programs (it need

only communicate messages between nodes)
- Can connect commodity systems together to form a large parallel machine

(message passing is a programming model for clusters and supercomputers)

Cluster of workstations
(In!niband network)

 Stanford CS149, Fall 2021

The data-parallel model

 Stanford CS149, Fall 2021

Programming models provide a way to think about the organization
of parallel programs (by imposing structure)

▪ Shared address space: very little structure to communication
- All threads can read and write to all shared variables

▪ Message passing: communication is structured in the form of messages
- All communication occurs in the form of messages
- Communication is explicit in source code—the sends and receives)

▪ Data parallel structure: more rigid structure to computation
- Perform same function on elements of large collections

 Stanford CS149, Fall 2021

Data-parallel model *
▪ Organize computation as operations on sequences of elements

- e.g., perform same function on all elements of a sequence

▪ A well-known modern example: NumPy: C = A + B
(A, B, and C are vectors of same length)

Something you’ve seen early in the lecture…

* We’ll have multiple lectures in the course about data-parallel programming and data-parallel thinking: this is just a taste

 Stanford CS149, Fall 2021

Key data type of data-parallel code: sequences
▪ A sequence is an ordered collection of elements
▪ For example, in a C++ like language: Sequence<T>
▪ Scala lists: List[T]
▪ In a functional language (like Haskell): seq T

▪ Program can only access elements of sequence through sequence operators:
- map, reduce, scan, shift, etc.

 Stanford CS149, Fall 2021

Map
▪ Higher order function (function that takes a function as an argument) that operates on sequences
▪ Applies side-e"ect-free unary function f :: a -> b to all elements of input sequence, to produce

output sequence of the same length
▪ In a functional language (e.g., Haskell)

- map :: (a -> b) -> seq a -> seq b

▪ In C++:
template<class InputIt, class OutputIt, class UnaryOperation>
OutputIt transform(InputIt first1, InputIt last1,
 OutputIt d_first,
 UnaryOperation unary_op);

f f f f f f

 Stanford CS149, Fall 2021

Parallelizing map
▪ Since f :: a -> b is a function (side-e"ect free), then applying f to all elements of

the sequence can be done in any order without changing the output of the program

▪ The implementation of map has $exibility to reorder/parallelize processing of elements
of sequence however it sees !t

 Stanford CS149, Fall 2021

Data parallelism in ISPC

// ISPC code:
export void absolute_value(
 uniform int N,
 uniform float* x,
 uniform float* y)
{
 foreach (i = 0 ... N)
 {

 if (x[i] < 0)
 y[i] = -x[i];
 else
 y[i] = x[i];
 }

}

foreach construct

Think of loop body as a function

Given this program, it is reasonable to think of the program as
using foreach to “map the loop body onto each element” of the
arrays X and Y.

But if we want to be more precise: a sequence is not a !rst-class
ISPC concept. It is implicitly de!ned by how the program has
implemented array indexing logic in the foreach loop.

(There is no operation in ISPC with the semantic: “map this code
over all elements of this sequence”)

// main C++ code:
const int N = 1024;
float* x = new float[N];
float* y = new float[N];

// initialize N elements of x here

absolute_value(N, x, y);

 Stanford CS149, Fall 2021

Data parallelism in ISPC

// ISPC code:
export void absolute_repeat(
 uniform int N,
 uniform float* x,
 uniform float* y)
{
 foreach (i = 0 ... N)
 {

 if (x[i] < 0)
 y[2*i] = -x[i];
 else
 y[2*i] = x[i];
 y[2*i+1] = y[2*i];
 }

}

Think of loop body as a function

The input/output sequences being mapped over are
implicitly de!ned by array indexing logic

// main C++ code:
const int N = 1024;
float* x = new float[N/2];
float* y = new float[N];

// initialize N/2 elements of x here

absolute_repeat(N/2, x, y);

This is also a valid ISPC program!

It takes the absolute value of elements of x, then repeats it
twice in the output array y

(Less obvious how to think of this code as mapping the loop
body onto existing sequences.)

 Stanford CS149, Fall 2021

Data parallelism in ISPC

// ISPC code:
export void shift_negative(
 uniform int N,
 uniform float* x,
 uniform float* y)
{
 foreach (i = 0 ... N)
 {
 if (i >= 1 && x[i] < 0)

 y[i-1] = x[i];
 else
 y[i] = x[i];
 }

}

// main C++ code:
const int N = 1024;
float* x = new float[N];
float* y = new float[N];

// initialize N elements of x

shift_negative(N, x, y);

The output of this program is unde!ned!

Possible for multiple iterations of the loop body to write to same
memory location

Data-parallel model (foreach) provides no speci!cation of order in
which iterations occur

Think of loop body as a function

The input/output sequences being mapped
over are implicitly de!ned by array indexing
logic

 Stanford CS149, Fall 2021

ISPC discussion: sum “reduction”

export uniform float sumall2(uniform int N, uniform float* x)
{
 uniform float sum;
 float partial = 0.0f;
 foreach (i = 0 ... N)
 {
 partial += x[i];
 }

 // from ISPC math library
 sum = reduce_add(partial);

 return sum;
}

export uniform float sumall1(uniform int N, uniform float* x)
{
 uniform float sum = 0.0f;
 foreach (i = 0 ... N)
 {
 sum += x[i];
 }

 return sum;
}

Compute the sum of all array elements in parallel

sum is of type uniform float (one copy of variable for all program instances)
x[i] is not a uniform expression (di"erent value for each program instance)
Result: compile-time type error

Correct ISPC solution

 Stanford CS149, Fall 2021

ISPC discussion: sum “reduction”
export uniform float sumall2(
 uniform int N,
 uniform float* x)
{
 uniform float sum;
 float partial = 0.0f;
 foreach (i = 0 ... N)
 {
 partial += x[i];
 }

 // from ISPC math library
 sum = reduce_add(partial);

 return sum;
}

Each instance accumulates a private partial sum
(no communication)

Partial sums are added together using the reduce_add() cross-instance
communication primitive. The result is the same total sum for all program
instances (reduce_add() returns a uniform $oat)

The ISPC code at right will execute in a manner similar to handwritten C + AVX
intrinsics implementation below. *
float sumall2(int N, float* x) {

 float tmp[8]; // assume 16-byte alignment
 __mm256 partial = _mm256_broadcast_ss(0.0f);

 for (int i=0; i<N; i+=8)
 partial = _mm256_add_ps(partial, _mm256_load_ps(&x[i]));

 _mm256_store_ps(tmp, partial);

 float sum = 0.f;
 for (int i=0; i<8; i++)
 sum += tmp[i];

 return sum;
}

* Self-test: If you understand why this implementation
complies with the semantics of the ISPC gang abstraction,
then you’ve got a good command of ISPC

 Stanford CS149, Fall 2021

Summary: data-parallel model
▪ Data-parallelism is about imposing rigid program structure to facilitate simple programming

and advanced optimizations

▪ Basic structure: map a function onto a large collection of data
- Functional: side-e"ect free execution
- No communication among distinct function invocations

(allow invocations to be scheduled in any order, including in parallel)

▪ Other data parallel operators express more complex patterns on sequences: gather, scatter,
reduce, scan, shift, etc.
- This will be a topic of a later lecture

▪ You will think in terms of data-parallel primitives often in this class, but many modern
performance-oriented data-parallel languages do not enforce this structure in the language
- Many languages (like ISPC, CUDA, etc.) choose $exibility/familiarity of imperative C-style syntax over the safety of a more

functional form

 Stanford CS149, Fall 2021

Summary
▪ Programming models provide a way to think about the organization of parallel programs.

▪ They provide abstractions that permit multiple valid implementations.

▪ I want you to always be thinking about abstraction vs. implementation for the remainder of
this course.

 Stanford CS149, Fall 2021

Parallel Programming Basics

 Stanford CS149, Fall 2021

Creating a parallel program
▪ Thought process:

1. Identify work that can be performed in parallel
2. Partition work (and also data associated with the work)
3. Manage data access, communication, and synchronization

▪ A common goal is maximizing speedup *
For a !xed computation:

Speedup(P processors) =
Time (1 processor)

Time (P processors)

* Other goals include high e#ciency (cost, area, power, etc.)
 or working on bigger problems than can !t on one machine

 Stanford CS149, Fall 2021

Creating a parallel program
Problem to solve

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine

Decomposition

Assignment

Orchestration

Mapping

These responsibilities may be assumed by
the programmer, by the system (compiler,

runtime, hardware), or by both!

** I had to pick a term

Adopted from: Culler, Singh, and Gupta

 Stanford CS149, Fall 2021

Problem decomposition
▪ Break up problem into tasks that can be carried out in parallel

▪ In general: create at least enough tasks to keep all execution units on a machine busy

Key challenge of decomposition:
identifying dependencies

(or... a lack of dependencies)

 Stanford CS149, Fall 2021

Amdahl’s Law: dependencies limit maximum speedup
due to parallelism

▪ You run your favorite sequential program...

▪ Let S = the fraction of sequential execution that is inherently sequential (dependencies
prevent parallel execution)

▪ Then maximum speedup due to parallel execution ≤ 1/S

 Stanford CS149, Fall 2021

A simple example
▪ Consider a two-step computation on a N x N image

- Step 1: multiply brightness of all pixels by two
(independent computation on each pixel)

- Step 2: compute average of all pixel values

▪ Sequential implementation of program
- Both steps take ~ N2 time, so total time is ~ 2N2

N

N

Execution time

Pa
ra

lle
lis

m

N2 N2

1

 Stanford CS149, Fall 2021

▪ Overall performance:

Speedup

Speedup ≤ 2

First attempt at parallelism (P processors)
▪ Strategy:

- Step 1: execute in parallel
- time for phase 1: N2/P

- Step 2: execute serially
- time for phase 2: N2

Execution time

Pa
ra

lle
lis

m

N2/P

N2

1

P

Execution time

Pa
ra

lle
lis

m

N2 N2
1

P
Sequential program

Parallel program

 Stanford CS149, Fall 2021

Parallelizing step 2
▪ Strategy:

- Step 1: execute in parallel
- time for phase 1: N2/P

- Step 2: compute partial sums in parallel, combine results serially
- time for phase 2: N2/P + P

▪ Overall performance:

- Speedup

Execution time

Pa
ra

lle
lis

m

N2/P

1

P
N2/P

Note: speedup → P when N >> P

Overhead of parallel algorithm:
combining the partial sums

Parallel program

P

 Stanford CS149, Fall 2021

Amdahl’s law
▪ Let S = the fraction of total work that is inherently sequential
▪ Max speedup on P processors given by:

Num Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1

speedup

 Stanford CS149, Fall 2021

A small serial region can limit speedup on a large parallel machine
Summit supercomputer: 27,648 GPUs x (5,376 ALUs/GPU) = 148,635,648 ALUs
Machine can perform 148 million single precision operations in parallel
What is max speedup if 0.1% of application is serial?

 Stanford CS149, Fall 2021

Decomposition
▪ Who is responsible for decomposing a program into independent tasks?

- In most cases: the programmer

▪ Automatic decomposition of sequential programs continues to be a challenging
research problem
(very di#cult in general case)
- Compiler must analyze program, identify dependencies

- What if dependencies are data dependent (not known at compile time)?
- Researchers have had modest success with simple loop nests
- The “magic parallelizing compiler” for complex, general-purpose code has not yet been achieved

 Stanford CS149, Fall 2021

Assignment
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine ** I had to pick a term

 Stanford CS149, Fall 2021

Assignment
▪ Assigning tasks to threads **

- Think of “tasks” as things to do
- Think of threads as “workers”

▪ Goals: achieve good workload balance, reduce communication costs

▪ Can be performed statically (before application is run), or dynamically as program executes

▪ Although programmer is often responsible for decomposition, many languages/runtimes take
responsibility for assignment.

** I had to pick a term
(will explain in a second)

 Stanford CS149, Fall 2021

Assignment examples in ISPC
export void ispc_sinx_interleaved(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assumes N % programCount = 0
 for (uniform int i=0; i<N; i+=programCount)
 {

 int idx = i + programIndex;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[idx] * x[idx];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[i] = value;
 }
}

Decomposition of work by loop iteration

Programmer-managed assignment:
Static assignment
Assign iterations to ISPC program instances in interleaved fashion

export void ispc_sinx_foreach(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 foreach (i = 0 ... N)
 {

 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom;
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[i] = value;
 }
}

Decomposition of work by loop iteration

foreach construct exposes independent work to system
System-manages assignment of iterations (work) to ISPC program
instances (abstraction leaves room for dynamic assignment, but
current ISPC implementation is static)

 Stanford CS149, Fall 2021

Example 2: static assignment using C++11 threads
void my_thread_start(int N, int terms, float* x, float* results) {
 sinx(N, terms, x, result); // do work
}

void parallel_sinx(int N, int terms, float* x, float* result) {

 int half = N/2.

 // launch thread to do work on first half of array
 std::thread t1(my_thread_start, half, terms, x, result);

 // do work on second half of array in main thread
 sinx(N - half, terms, x + half, result + half);

 t1.join();
}

Decomposition of work by loop iteration

Programmer-managed static assignment
This program assigns loop iterations to threads in a
blocked fashion (!rst half of array assigned to the
spawned thread, second half assigned to main thread)

 Stanford CS149, Fall 2021

Dynamic assignment using ISPC tasks
void foo(uniform float* input,
 uniform float* output,
 uniform int N)
{
 // create a bunch of tasks
 launch[100] my_ispc_task(input, output, N);
}

Worker
thread 0

Worker
thread 1

Worker
thread 2

Worker
thread 3

task 0 task 1 task 2 task 99. . .
List of tasks:

Implementation of task assignment to threads: after completing current task,
worker thread inspects list and assigns itself the next uncompleted task.

Next task ptr

task 3 task 4

ISPC runtime assigns tasks to worker threads

 Stanford CS149, Fall 2021

Orchestration
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine ** I had to pick a term

 Stanford CS149, Fall 2021

Orchestration
▪ Involves:

- Structuring communication
- Adding synchronization to preserve dependencies if necessary
- Organizing data structures in memory
- Scheduling tasks

▪ Goals: reduce costs of communication/sync, preserve locality of data reference, reduce
overhead, etc.

▪ Machine details impact many of these decisions
- If synchronization is expensive, programmer might use it more sparsely

 Stanford CS149, Fall 2021

Mapping to hardware
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine ** I had to pick a term

 Stanford CS149, Fall 2021

Mapping to hardware
▪ Mapping “threads” (“workers”) to hardware execution units

▪ Example 1: mapping by the operating system
- e.g., map a thread to HW execution context on a CPU core

▪ Example 2: mapping by the compiler
- Map ISPC program instances to vector instruction lanes

▪ Example 3: mapping by the hardware
- Map CUDA thread blocks to GPU cores (discussed in future lecture)

▪ Some interesting mapping decisions:
- Place related threads (cooperating threads) on the same processor

(maximize locality, data sharing, minimize costs of comm/sync)
- Place unrelated threads on the same processor (one might be bandwidth limited and another might be compute limited) to

use machine more e#ciently

 Stanford CS149, Fall 2021

Example: mapping to hardware
▪ Consider an application that creates two threads
▪ The application runs on the processor shown below

- Two cores, two-execution contexts per core, up to instructions per clock, one instruction is an 8-wide SIMD instruction.

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

Execution
Context

Execution
Context

Fetch/
Decode

Fetch/
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping the applications’s threads to
the processor’s thread execution contexts?
Answer: the operating system

▪ Question: If you were implementing the OS, how would to map the two
threads to the four execution contexts?

▪ Another question: How would you map
threads to execution contexts if your C
program spawned !ve threads?

 Stanford CS149, Fall 2021

A parallel programming example

 Stanford CS149, Fall 2021

A 2D-grid based solver
▪ Problem: solve partial di"erential equation (PDE) on (N+2) x (N+2) grid
▪ Solution uses iterative algorithm:

- Perform Gauss-Seidel sweeps over grid until convergence
N

N

A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j]

 + A[i,j+1] + A[i+1,j]);

Grid solver example from: Culler, Singh, and Gupta

 Stanford CS149, Fall 2021

Grid solver algorithm: !nd the dependencies
C-like pseudocode for sequential algorithm is provided below

const int n;
float* A; // assume allocated for grid of N+2 x N+2 elements

void solve(float* A) {

 float diff, prev;
 bool done = false;

 while (!done) { // outermost loop: iterations
 diff = 0.f;
 for (int i=1; i<n i++) { // iterate over non-border points of grid
 for (int j=1; j<n; j++) {
 prev = A[i,j];
 A[i,j] = 0.2f * (A[i,j] + A[i,j-1] + A[i-1,j] +
 A[i,j+1] + A[i+1,j]);
 diff += fabs(A[i,j] - prev); // compute amount of change
 }
 }

 if (diff/(n*n) < TOLERANCE) // quit if converged
 done = true;
 }
}

Grid solver example from: Culler, Singh, and Gupta

 Stanford CS149, Fall 2021

Step 1: identify dependencies
(problem decomposition phase)

N

N
......

Each row element depends on element to left.

Each row depends on previous row.

Note: the dependencies illustrated on this slide are grid
element data dependencies in one iteration of the solver
(in one iteration of the “while not done” loop)

 Stanford CS149, Fall 2021

Step 1: identify dependencies
(problem decomposition phase)

N

N
......

There is independent work along the diagonals!

Good: parallelism exists!

Possible implementation strategy:
1. Partition grid cells on a diagonal into tasks
2. Update values in parallel
3. When complete, move to next diagonal

Bad: independent work is hard to exploit
Not much parallelism at beginning and end of computation.
Frequent synchronization (after completing each diagonal)

 Stanford CS149, Fall 2021

Let’s make life easier on ourselves
▪ Idea: improve performance by changing the algorithm to one that is more amenable

to parallelism

- Change the order that grid cell cells are updated

- New algorithm iterates to same solution (approximately), but converges to solution
di"erently
- Note: $oating-point values computed are di"erent, but solution still converges to within error threshold

- Yes, we needed domain knowledge of the Gauss-Seidel method to realize this
change is permissible
- But this is a common technique in parallel programming

 Stanford CS149, Fall 2021

New approach: reorder grid cell update via red-black coloring
Reorder grid traversal: red-black coloring

N

N

Update all red cells in parallel

When done updating red cells ,
update all black cells in parallel
(respect dependency on red cells)

Repeat until convergence

 Stanford CS149, Fall 2021

Possible assignments of work to processors
Reorder grid traversal: red-black coloring

Question: Which is better? Does it matter?
Answer: it depends on the system this program is running on

 Stanford CS149, Fall 2021

Consider dependencies in the program
1. Perform red cell update in parallel
2. Wait until all processors done with update
3. Communicate updated red cells to other processors
4. Perform black cell update in parallel
5. Wait until all processors done with update
6. Communicate updated black cells to other processors
7. Repeat

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4

 Stanford CS149, Fall 2021

Communication resulting from assignment
Reorder grid traversal: red-black coloring

= data that must be sent to P2 each iteration
Blocked assignment requires less data to be communicated between processors

 Stanford CS149, Fall 2021

Two ways to think about writing this program
▪ Data parallel thinking

▪ SPMD / shared address space

 Stanford CS149, Fall 2021

Data-parallel expression of solver

 Stanford CS149, Fall 2021

const int n;

float* A = allocate(n+2, n+2)); // allocate grid

void solve(float* A) {

 bool done = false;
 float diff = 0.f;
 while (!done) {
 for_all (red cells (i,j)) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] +
 A[i+1,j] + A[i,j+1]);
 reduceAdd(diff, abs(A[i,j] - prev));
 }

 if (diff/(n*n) < TOLERANCE)
 done = true;
 }
}

Data-parallel expression of grid solver
Note: to simplify pseudocode: just showing red-cell update

Decomposition:
processing individual
grid elements constitutes
independent work

Assignment: ???

Orchestration:
handled by system
(End of for_all block is implicit wait for all
workers before returning to sequential control)

Grid solver example from: Culler, Singh, and Gupta

Orchestration: handled by system
(builtin communication primitive: reduceAdd)

 Stanford CS149, Fall 2021

Shared address space (with SPMD
threads) expression of solver

 Stanford CS149, Fall 2021

Shared address space expression of solver
SPMD execution model

▪ Programmer is responsible for synchronization

▪ Common synchronization primitives:
- Locks (provide mutual exclusion): only one

thread in the critical region at a time
- Barriers: wait for threads to reach this point

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4

 Stanford CS149, Fall 2021

int n; // grid size
bool done = false;
float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {
 float myDiff;
 int threadId = getThreadId();
 int myMin = 1 + (threadId * n / NUM_PROCESSORS);
 int myMax = myMin + (n / NUM_PROCESSORS)

 while (!done) {
 float myDiff = 0.f;
 diff = 0.f;
 barrier(myBarrier, NUM_PROCESSORS);
 for (j=myMin to myMax) {
 for (i = red cells in this row) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]);
 myDiff += abs(A[i,j] - prev));
 }
 lock(myLock);
 diff += myDiff;
 unlock(myLock);
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer
 done = true;
 barrier(myBarrier, NUM_PROCESSORS);
 }
}

Shared address space solver

Value of threadId is di"erent for each SPMD instance:
use value to compute region of grid to work on

Each thread computes the rows it is responsible for updating

Grid solver example from: Culler, Singh, and Gupta

Assume these are global variables
(accessible to all threads)
Assume solve function is executed by all threads.
(SPMD-style)

(pseudocode in SPMD execution model)

 Stanford CS149, Fall 2021

int n; // grid size
bool done = false;
float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {
 float myDiff;
 int threadId = getThreadId();
 int myMin = 1 + (threadId * n / NUM_PROCESSORS);
 int myMax = myMin + (n / NUM_PROCESSORS)

 while (!done) {
 float myDiff = 0.f;
 diff = 0.f;
 barrier(myBarrier, NUM_PROCESSORS);
 for (j=myMin to myMax) {
 for (i = red cells in this row) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]);
 myDiff += abs(A[i,j] - prev));
 }
 lock(myLock);
 diff += myDiff;
 unlock(myLock);
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer
 done = true;
 barrier(myBarrier, NUM_PROCESSORS);
 }
}

Shared address space solver

Do you see a potential performance
problem with this implementation?

Grid solver example from: Culler, Singh, and Gupta

(pseudocode in SPMD execution model)

 Stanford CS149, Fall 2021

int n; // grid size
bool done = false;
float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {
 float myDiff;
 int threadId = getThreadId();
 int myMin = 1 + (threadId * n / NUM_PROCESSORS);
 int myMax = myMin + (n / NUM_PROCESSORS)

 while (!done) {
 float myDiff = 0.f;
 diff = 0.f;
 barrier(myBarrier, NUM_PROCESSORS);
 for (j=myMin to myMax) {
 for (i = red cells in this row) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]);
 myDiff += abs(A[i,j] - prev));
 }
 lock(myLock);
 diff += myDiff;
 unlock(myLock);
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer
 done = true;
 barrier(myBarrier, NUM_PROCESSORS);
 }
}

Shared address space solver

Compute partial sum per worker

Now only only lock once per thread,
not once per (i,j) loop iteration!

Grid solver example from: Culler, Singh, and Gupta

Improve performance by accumulating into partial
sum locally, then complete global reduction at the
end of the iteration.

(pseudocode in SPMD execution model)

 Stanford CS149, Fall 2021

Barrier synchronization primitive
▪ barrier(num_threads)

▪ Barriers are a conservative way to express dependencies
▪ Barriers divide computation into phases
▪ All computations by all threads before the barrier complete

before any computation in any thread after the barrier begins
- In other words, all computations after the barrier are

assumed to depend on all computations before the barrier

Barrier

Barrier

Compute red cells

Compute black cells

P1 P2 P3 P4

 Stanford CS149, Fall 2021

int n; // grid size
bool done = false;
float diff = 0.0;
LOCK myLock;
BARRIER myBarrier;

// allocate grid
float* A = allocate(n+2, n+2);

void solve(float* A) {
 float myDiff;
 int threadId = getThreadId();
 int myMin = 1 + (threadId * n / NUM_PROCESSORS);
 int myMax = myMin + (n / NUM_PROCESSORS)

 while (!done) {
 float myDiff = 0.f;
 diff = 0.f;
 barrier(myBarrier, NUM_PROCESSORS);
 for (j=myMin to myMax) {
 for (i = red cells in this row) {
 float prev = A[i,j];
 A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]);
 myDiff += abs(A[i,j] - prev));
 }
 lock(myLock);
 diff += myDiff;
 unlock(myLock);
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff/(n*n) < TOLERANCE) // check convergence, all threads get same answer
 done = true;
 barrier(myBarrier, NUM_PROCESSORS);
 }
}

Shared address space solver
Why are there three barriers?

Grid solver example from: Culler, Singh, and Gupta

 Stanford CS149, Fall 2021

Shared address space solver: one barrier
int n; // grid size
bool done = false;
LOCK myLock;
BARRIER myBarrier;
float diff[3]; // global diff, but now 3 copies

float *A = allocate(n+2, n+2);

void solve(float* A) {
 float myDiff; // thread local variable
 int index = 0; // thread local variable

 diff[0] = 0.0f;
 barrier(myBarrier, NUM_PROCESSORS); // one-time only: just for init

 while (!done) {
 myDiff = 0.0f;
 //
 // perform computation (accumulate locally into myDiff)
 //
 lock(myLock);
 diff[index] += myDiff; // atomically update global diff
 unlock(myLock);
 diff[(index+1) % 3] = 0.0f;
 barrier(myBarrier, NUM_PROCESSORS);
 if (diff[index]/(n*n) < TOLERANCE)
 break;
 index = (index + 1) % 3;
 }
}

Idea:
Remove dependencies by using di"erent diff
variables in successive loop iterations

Trade o" footprint for removing dependencies!
(a common parallel programming technique)

Grid solver example from: Culler, Singh, and Gupta

 Stanford CS149, Fall 2021

Grid solver implementation in two programming models

▪ Data-parallel programming model
- Synchronization:

- Single logical thread of control, but iterations of forall loop may be parallelized by the system (implicit
barrier at end of forall loop body)

- Communication
- Implicit in loads and stores (like shared address space)
- Special built-in primitives for more complex communication patterns:

e.g., reduce

▪ Shared address space
- Synchronization:

- Mutual exclusion required for shared variables (e.g., via locks)
- Barriers used to express dependencies (between phases of computation)

- Communication
- Implicit in loads/stores to shared variables

 Stanford CS149, Fall 2021

Summary
▪ Amdahl’s Law

- Overall maximum speedup from parallelism is limited by amount of serial execution in a program

▪ Aspects of creating a parallel program
- Decomposition to create independent work, assignment of work to workers, orchestration (to coordinate

processing of work by workers), mapping to hardware
- We’ll talk a lot about making good decisions in each of these phases in the coming lectures (in practice,

they are very inter-related)

▪ Focus today: identifying dependencies

▪ Focus soon: identifying locality, reducing synchronization

