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Quiz: reviewing ISPC abstractions
export void ispc_sinx( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assume N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[idx] = value; 
   } 
}

This is an ISPC function. 

It contains two nested for loops 

Consider one ISPC program instance. 
Which iterations of the two loops are executed in parallel 
by the ISPC program instance? 

Hint: this is a trick question 

Answer: none 
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Program instances (that run in parallel) are created when the 
ispc_sinx() ispc function is called 

#include “sinx_ispc.h” 

int N = 1024; 
int terms = 5; 
float* x = new float[N]; 
float* result = new float[N]; 

// initialize x here 

// execute ISPC code 
ispc_sinx(N, terms, x, result);

Each *ISPC program instance* executes the code 
in the function ispc_sinx serially. 
(parallelism exists because there are multiple 
program instances, not because of parallelism in 
the code that de!nes an ispc function)

Call to ispc_sinx() 
Begin executing programCount 
instances of ispc_sinx() 
(ISPC code)

Sequential execution (C code)

Sequential execution (C code)

ispc_sinx() returns. 
Completion of ISPC program instances 
Resume sequential execution

0  1  2  3  4  5  6  7  

main()

ispc_sinx()
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WHAT WE DIDN’T GET TO LAST TIME
Three ways of thinking about parallel computation

(Recall: abstraction vs. implementation)
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Three programming models (abstractions)

1. Shared address space 

2. Message passing 

3. Data parallel
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Shared address space model
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Review: a program’s memory address space
▪ A computer’s memory is organized as a array of bytes 

▪ Each byte is identi!ed by its “address” in memory 
(its position in this array) 
(in this class we assume memory is byte-addressable)

“The byte stored at address 0x10 (16) has the value 128.”

“The byte stored at address 0x8 has the value 32.”

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255
0
0
0

0x1F

. . 
.

. . 
.

0

In the illustration on the right, the program’s 
memory address space is 32 bytes in size 
(so valid addresses range from 0x0 to 0x1F)
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The implementation of the linear memory address space abstraction 
on a modern computer is complex

DRAM 
(32 GB)

L3 cache 
(20 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Core 1

Core 8

L1 cache 
(32 KB)

L2 cache 
(256 KB)

The instruction “load the value stored at address X into register R0” might involve a 
complex sequence of operations by multiple data caches and access to DRAM 
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Shared address space model (abstraction)

int x = 0; 
spawn_thread(foo, &x); 

// write to address holding  
// contents of variable x 
x = 1;

void foo(int* x) { 
   
  // read from addr storing  
  // contents of variable x 
  while (x == 0) {} 
  print x; 
}

Thread 1: Thread 2:

(Pseudocode provided in a fake C-like language for brevity.)

Thread 1

x

Thread 2
Shared address space

Store to x

Load from x

(Communication operations shown in red)

Threads communicate by reading/writing to locations in a shared address space (shared variables)
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A common metaphor: 
A shared address space is 
like a bulletin board 

(Everyone can read/write)

Image credit: 
https://thetab.com/us/stanford/2016/07/28/honest-packing-list-freshman-stanford-1278
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Coordinating access to shared variables with 
synchronization 

int x = 0; 
Lock my_lock; 

spawn_thread(foo, &x, &my_lock); 

mylock.lock(); 
x++; 
mylock.unlock();

void foo(int* x, Lock* my_lock) { 
  my_lock->lock(); 
  x++; 
  my_lock->unlock(); 
   
  print(x); 
}

Thread 1: Thread 2:
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Review: why do we need mutual exclusion?
▪ Each thread executes: 

- Load the value of variable x from a location in memory into register r1 
(this stores a copy of the value in memory in the register) 

- Add the contents of register r2 to register r1 
- Store the value of register r1 into the address storing the program variable x 

▪ One possible interleaving: (let starting value of x=0, r2=1) 

r1 ← x 

r1 ← r1 + r2 

X ← r1

r1 ← x 

r1 ← r1 + r2 

X ← r1

T1 T2
T1 reads value 0 

T2 reads value 0 

T1 sets value of its r1 to 1 

T2 sets value of its r1 to 1 

T1 stores 1 to address of x 

T2 stores 1 to address of x

▪ Need this set of three instructions must be “atomic”
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Examples of mechanisms for preserving atomicity
▪ Lock/unlock mutex around a critical section

mylock.lock(); 

// critical section 

mylock.unlock();

▪ Intrinsics for hardware-supported atomic read-modify-write operations

▪ Some languages have !rst-class support for atomicity of code blocks
atomic { 

  // critical section 

}

atomicAdd(x, 10);
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Review: shared address space model
▪ Threads communicate by: 

- Reading/writing to shared variables in a shared address space 
- Inter-thread communication is implicit in memory loads/stores 

- Manipulating synchronization primitives 
- e.g., ensuring mutual exclusion via use of locks 

▪ This is a natural extension of sequential programming 
- In fact, all our discussions in class have assumed a shared address space so far!



 Stanford CS149, Fall 2021

Hardware implementation of a shared address space
Key idea: any processor can directly reference contents of any memory location

Core
Local Cache

Core
Local Cache

Core
Local Cache

Core
Local Cache

Interconnect

Memory I/O

Core Core Core Core

Memory Memory

Core

Core

Core

Core

Memory

Core Core Core Core

Memory MemoryMemory Memory

Examples of interconnects

Memory

Shared Bus

Multi-stage network

Crossbar

* Caches (not shown) are another implementation of a shared address space (more on this in a later lecture)
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Shared address space hardware architecture
Any processor can directly reference any memory location

Intel Core i7 (quad core) 
(interconnect is a ring)Example: Intel Core i7 processor (Kaby Lake)

Core 1

Core 3 Core 4

Memory Controller

Memory

Core 2
Integrated 

GPU
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Intel’s ring interconnect
Introduced in Sandy Bridge microarchitecture

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

L3 cache slice 
(2 MB)

System Agent

Graphics

▪ Four rings: for di"erent types of messages 
- request 
- snoop 
- ack 
- data (32 bytes) 

▪ Six interconnect nodes: four “slices” of L3 cache + system agent 
+ graphics 

▪ Each bank of L3 connected to ring bus twice 

▪ Theoretical peak BW from cores to L3 at 3.4 GHz ~ 435 GB/sec 
- When each core is accessing its local slice

Core

Core

Core

Core
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SUN Niagara 2 (UltraSPARC T2): crossbar interconnect

Memory

Memory

Memory

Memory

L2 cache

L2 cache

L2 cache

L2 cache

Core

Core

Core

Core

Core

Core

Core

Core

Crossbar 
Switch

Eight core processor

Note area of crossbar (CCX): 
about same area as one core on chip
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KNL Mesh Interconnect 
Mesh of Rings 
� Every row and column is a (half) ring 

� YX routing: Go in Y Æ Turn Æ Go in X 

� Messages arbitrate at injection and on 
turn 

 

Cache Coherent Interconnect 
� MESIF protocol (F = Forward) 

� Distributed directory to filter snoops 

 

Three Cluster Modes 
(1) All-to-All (2) Quadrant (3) Sub-NUMA 
Clustering 

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

MCDRAM MCDRAM MCDRAM MCDRAM 

MCDRAM MCDRAM MCDRAM MCDRAM 

Intel Xeon Phi (Knights Landing)

▪ 72 cores, arranged as 6x6 mesh of tiles (2 cores/tile) 
▪ YX routing of messages: 

- Message travels in Y direction 
- “Turn” 
- Message traves in X direction
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Non-uniform memory access (NUMA)

On chip 
network

Core 1 Core 2

Core 3 Core 4

Memory Controller

Memory

Core 5 Core 6

Core 7 Core 8

Memory Controller

Memory

Example: modern multi-socket con!guration

X

The latency of accessing a memory location may be di"erent from di"erent processing cores in the system 
Bandwidth from any one location may also be di"erent to di"erent CPU cores *

* In practice, you’ll !nd NUMA behavior on a single-socket system as well (recall: di"erent cache slices are a di"erent distance from each core)
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Summary: shared address space model
▪ Communication abstraction 

- Threads read/write variables in shared address space 
- Threads manipulate synchronization primitives: locks, atomic ops, etc. 
- Logical extension of uniprocessor programming * 

▪ Requires hardware support to implement e#ciently 
- Any processor can load and store from any address 
- Can be costly to scale to large numbers of processors 

(one of the reasons why high-core count processors are expensive)

* But NUMA implementations require reasoning about locality for performance optimization
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Message passing model of 
communication
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Message passing model (abstraction)

Thread 1 address space

Variable X

▪ Threads operate within their own private address spaces 
▪ Threads communicate by sending/receiving messages 

- send: speci!es recipient, bu"er to be transmitted, and optional message identi!er (“tag”) 
- receive: sender, speci!es bu"er to store data, and optional message identi!er 
- Sending messages is the only way to exchange data between threads 1 and 2 

- Why?

x

Thread 2 address space

Variable Y

Y

(Communication operations shown in red)

Illustration adopted from Culler, Singh, Gupta 

send(X, 2, my_msg_id) 

semantics:  send contexts of local variable X as 
message to thread 2 and tag message with the 
id “my_msg_id”

recv(Y, 1, my_msg_id) 

semantics:  receive message with id “my_msg_id” 
from thread 1 and store contents in local variable Y
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A common metaphor: snail mail
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Message passing (implementation)
▪ Hardware need not implement system-wide loads and stores to execute message passing programs (it need 

only communicate messages between nodes) 
- Can connect commodity systems together to form a large parallel machine 

(message passing is a programming model for clusters and supercomputers)

Cluster of workstations 
(In!niband network)
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The data-parallel model
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Programming models provide a way to think about the organization 
of parallel programs (by imposing structure)

▪ Shared address space: very little structure to communication 
- All threads can read and write to all shared variables 

▪ Message passing: communication is structured in the form of messages 
- All communication occurs in the form of messages 
- Communication is explicit in source code—the sends and receives) 

▪ Data parallel structure: more rigid structure to computation 
- Perform same function on elements of large collections
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Data-parallel model *
▪ Organize computation as operations on sequences of elements 

- e.g., perform same function on all elements of a sequence 

▪ A well-known modern example: NumPy: C = A + B 
(A, B, and C are vectors of same length) 

Something you’ve seen early in the lecture…

* We’ll have multiple lectures in the course about data-parallel programming and data-parallel thinking: this is just a taste
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Key data type of data-parallel code: sequences
▪ A sequence is an ordered collection of elements 
▪ For example, in a C++  like language: Sequence<T> 
▪ Scala lists: List[T]  
▪ In a functional language (like Haskell): seq T  

▪ Program can only access elements of sequence through sequence operators: 
- map, reduce, scan, shift, etc. 
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Map
▪ Higher order function (function that takes a function as an argument) that operates on sequences 
▪ Applies side-e"ect-free unary function f :: a -> b to all elements of input sequence, to produce 

output sequence of the same length 
▪ In a functional language (e.g., Haskell) 

- map :: (a -> b) -> seq a -> seq b  

▪ In C++: 
template<class InputIt, class OutputIt, class UnaryOperation> 
OutputIt transform(InputIt first1, InputIt last1, 
                   OutputIt d_first, 
                   UnaryOperation unary_op);

f f f f f f
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Parallelizing map
▪ Since f :: a -> b is a function (side-e"ect free), then applying f to all elements of 

the sequence can be done in any order without changing the output of the program 

▪ The implementation of map has $exibility to reorder/parallelize processing of elements 
of sequence however it sees !t
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Data parallelism in ISPC

// ISPC code: 
export void absolute_value( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 

     if (x[i] < 0) 
        y[i] = -x[i]; 
     else 
        y[i] = x[i]; 
 } 

}

foreach construct 

Think of loop body as a function 

Given this program, it is reasonable to think of the program as 
using foreach to “map the loop body onto each element” of the 
arrays X and Y. 

But if we want to be more precise: a sequence is not a !rst-class 
ISPC concept. It is implicitly de!ned by how the program has 
implemented array indexing logic in the foreach loop. 

(There is no operation in ISPC with the semantic: “map this code 
over all elements of this sequence”)

// main C++ code: 
const int N = 1024; 
float* x = new float[N]; 
float* y = new float[N]; 

// initialize N elements of x here 

absolute_value(N, x, y);
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Data parallelism in ISPC

// ISPC code: 
export void absolute_repeat( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 

     if (x[i] < 0) 
        y[2*i] = -x[i]; 
     else 
        y[2*i] = x[i]; 
     y[2*i+1] = y[2*i]; 
 } 

}

Think of loop body as a function 

The input/output sequences being mapped over are 
implicitly de!ned by array indexing logic 

// main C++ code: 
const int N = 1024; 
float* x = new float[N/2]; 
float* y = new float[N]; 

// initialize N/2 elements of x here 

absolute_repeat(N/2, x, y);

This is also a valid ISPC program! 

It takes the absolute value of elements of x, then repeats it 
twice in the output array y  

(Less obvious how to think of this code as mapping the loop 
body onto existing sequences.)
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Data parallelism in ISPC

// ISPC code: 
export void shift_negative( 
   uniform int N, 
   uniform float* x, 
   uniform float* y) 
{ 
   foreach (i = 0 ... N) 
   { 
       if (i >= 1 && x[i] < 0) 

       y[i-1] = x[i]; 
     else 
       y[i] = x[i]; 
 } 

}

// main C++ code: 
const int N = 1024; 
float* x = new float[N]; 
float* y = new float[N]; 

// initialize N elements of x 

shift_negative(N, x, y);

The output of this program is unde!ned! 

Possible for multiple iterations of the loop body to write to same 
memory location 

Data-parallel model (foreach) provides no speci!cation of order in 
which iterations occur

Think of loop body as a function 

The input/output sequences being mapped 
over are implicitly de!ned by array indexing 
logic 
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ISPC discussion: sum “reduction”

export uniform float sumall2(uniform int N, uniform float* x) 
{ 
   uniform float sum; 
   float partial = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      partial += x[i]; 
   } 

   // from ISPC math library 
   sum = reduce_add(partial); 
    
   return sum; 
}

export uniform float sumall1(uniform int N, uniform float* x) 
{ 
   uniform float sum = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      sum += x[i]; 
   } 
    
   return sum; 
}

Compute the sum of all array elements in parallel

sum is of type uniform float (one copy of variable for all program instances) 
x[i] is not a uniform expression (di"erent value for each program instance) 
Result: compile-time type error

Correct ISPC solution
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ISPC discussion: sum “reduction”
export uniform float sumall2( 
   uniform int N, 
   uniform float* x) 
{ 
   uniform float sum; 
   float partial = 0.0f; 
   foreach (i = 0 ... N) 
   { 
      partial += x[i]; 
   } 

   // from ISPC math library 
   sum = reduce_add(partial); 
    
   return sum; 
}

Each instance accumulates a private partial sum 
(no communication) 

Partial sums are added together using the reduce_add() cross-instance 
communication primitive.  The result is the same total sum for all program 
instances (reduce_add() returns a uniform $oat) 

The ISPC code at right will execute in a manner similar to handwritten C + AVX 
intrinsics implementation below. *
float sumall2(int N, float* x) { 

  float tmp[8];  // assume 16-byte alignment 
  __mm256 partial = _mm256_broadcast_ss(0.0f); 

  for (int i=0; i<N; i+=8) 
    partial = _mm256_add_ps(partial, _mm256_load_ps(&x[i])); 

  _mm256_store_ps(tmp, partial); 

  float sum = 0.f; 
  for (int i=0; i<8; i++) 
    sum += tmp[i]; 

  return sum; 
}

* Self-test: If you understand why this implementation 
complies with the semantics of the ISPC gang abstraction, 
then you’ve got a good command of ISPC
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Summary: data-parallel model
▪ Data-parallelism is about imposing rigid program structure to facilitate simple programming 

and advanced optimizations 

▪ Basic structure: map a function onto a large collection of data 
- Functional: side-e"ect free execution 
- No communication among distinct function invocations 

(allow invocations to be scheduled in any order, including in parallel) 

▪ Other data parallel operators express more complex patterns on sequences: gather, scatter, 
reduce, scan, shift, etc. 
- This will be a topic of a later lecture 

▪ You will think in terms of data-parallel primitives often in this class, but many modern 
performance-oriented data-parallel languages do not enforce this structure in the language 
- Many languages (like ISPC, CUDA, etc.) choose $exibility/familiarity of imperative C-style syntax over the safety of a more 

functional form
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Summary
▪ Programming models provide a way to think about the organization of parallel programs. 

▪ They provide abstractions that permit multiple valid implementations. 

▪ I want you to always be thinking about abstraction vs. implementation for the remainder of 
this course.
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Parallel Programming Basics
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Creating a parallel program
▪ Thought process: 

1. Identify work that can be performed in parallel 
2. Partition work (and also data associated with the work) 
3. Manage data access, communication, and synchronization 

▪ A common goal is maximizing speedup *
For a !xed computation: 

Speedup( P processors )     = 
Time (1 processor)

Time (P processors)

* Other goals include high e#ciency (cost, area, power, etc.)  
    or working on bigger problems than can !t on one machine
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Creating a parallel program
Problem to solve

Subproblems 
(a.k.a. “tasks”, 
“work to do”)

Parallel Threads ** 
(“workers”)

Parallel program 
(communicating 

threads)

Execution on 
parallel machine

Decomposition

Assignment

Orchestration

Mapping

These responsibilities may be assumed by 
the programmer, by the system (compiler, 

runtime, hardware), or by both!

** I had to pick a term

Adopted from: Culler, Singh, and Gupta 
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Problem decomposition
▪ Break up problem into tasks that can be carried out in parallel 

▪ In general: create at least enough tasks to keep all execution units on a machine busy

Key challenge of decomposition: 
identifying dependencies 

(or... a lack of dependencies)
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Amdahl’s Law: dependencies limit maximum speedup 
due to parallelism 

▪ You run your favorite sequential program... 

▪ Let S = the fraction of sequential execution that is inherently sequential (dependencies 
prevent parallel execution) 

▪ Then maximum speedup due to parallel execution  ≤ 1/S
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A simple example
▪ Consider a two-step computation on a N x N image 

- Step 1: multiply brightness of all pixels by two 
(independent computation on each pixel) 

- Step 2: compute average of all pixel values 

▪ Sequential implementation of program 
- Both steps take ~ N2 time, so total time is ~ 2N2

N

N

Execution time

Pa
ra

lle
lis

m

N2 N2

1
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▪ Overall performance: 

Speedup 

Speedup ≤ 2   

First attempt at parallelism (P processors)
▪ Strategy: 

- Step 1: execute in parallel 
- time for phase 1: N2/P 

- Step 2: execute serially 
- time for phase 2: N2

Execution time

Pa
ra

lle
lis

m

N2/P

N2

1

P

Execution time

Pa
ra

lle
lis

m

N2 N2
1

P
Sequential program

Parallel program
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Parallelizing step 2
▪ Strategy: 

- Step 1: execute in parallel 
- time for phase 1: N2/P 

- Step 2: compute partial sums in parallel, combine results serially 
- time for phase 2: N2/P + P 

▪ Overall performance: 

- Speedup  

Execution time

Pa
ra

lle
lis

m

N2/P

1

P
N2/P

Note: speedup → P when N >> P

Overhead of parallel algorithm: 
combining the partial sums

Parallel program

P



 Stanford CS149, Fall 2021

Amdahl’s law
▪ Let S = the fraction of total work that is inherently sequential 
▪ Max speedup on P processors given by: 

Num Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1

speedup 



 Stanford CS149, Fall 2021

A small serial region can limit speedup on a large parallel machine
Summit supercomputer:  27,648 GPUs  x  (5,376 ALUs/GPU) = 148,635,648 ALUs 
Machine can perform 148 million single precision operations in parallel 
What is max speedup if 0.1% of application is serial? 
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Decomposition
▪ Who is responsible for decomposing a program into independent tasks? 

- In most cases: the programmer 

▪ Automatic decomposition of sequential programs continues to be a challenging 
research problem 
(very di#cult in general case) 
- Compiler must analyze program, identify dependencies 

- What if dependencies are data dependent (not known at compile time)? 
- Researchers have had modest success with simple loop nests 
- The “magic parallelizing compiler” for complex, general-purpose code has not yet been achieved
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Assignment
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems 
(a.k.a. “tasks”, 
“work to do”)

Parallel Threads ** 
(“workers”)

Parallel program 
(communicating 

threads)

Execution on 
parallel machine ** I had to pick a term
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Assignment
▪ Assigning tasks to threads **  

- Think of “tasks” as things to do 
- Think of threads as “workers” 

▪ Goals: achieve good workload balance, reduce communication costs 

▪ Can be performed statically (before application is run), or dynamically as program executes 

▪ Although programmer is often responsible for decomposition, many languages/runtimes take 
responsibility for assignment.

** I had to pick a term 
(will explain in a second)
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Assignment examples in ISPC
export void ispc_sinx_interleaved( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   // assumes N % programCount = 0 
   for (uniform int i=0; i<N; i+=programCount) 
   { 

    int idx = i + programIndex; 
    float value = x[idx]; 
    float numer = x[idx] * x[idx] * x[idx]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[idx] * x[idx]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[i] = value; 
   } 
}

Decomposition of work by loop iteration 

Programmer-managed assignment: 
Static assignment 
Assign iterations to ISPC program instances in interleaved fashion

export void ispc_sinx_foreach( 
   uniform int N, 
   uniform int terms, 
   uniform float* x, 
   uniform float* result) 
{ 
   foreach (i = 0 ... N) 
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    uniform int denom = 6;  // 3! 
    uniform int sign = -1; 

    for (uniform int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 
      result[i] = value; 
   } 
}

Decomposition of work by loop iteration 

foreach construct exposes independent work to system 
System-manages assignment of iterations (work) to ISPC program 
instances (abstraction leaves room for dynamic assignment, but 
current ISPC implementation is static)
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Example 2: static assignment using C++11 threads
void my_thread_start(int N, int terms, float* x, float* results) { 
  sinx(N, terms, x, result); // do work 
} 

void parallel_sinx(int N, int terms, float* x, float* result) { 

    int half = N/2. 
  
    // launch thread to do work on first half of array 
    std::thread t1(my_thread_start, half, terms, x, result); 

    // do work on second half of array in main thread 
    sinx(N - half, terms, x + half, result + half); 

    t1.join(); 
}

Decomposition of work by loop iteration 

Programmer-managed static assignment 
This program assigns loop iterations to threads in a 
blocked fashion (!rst half of array assigned to the 
spawned thread, second half assigned to main thread)
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Dynamic assignment using ISPC tasks
void foo(uniform float* input, 
         uniform float* output, 
         uniform int N) 
{ 
  // create a bunch of tasks 
  launch[100] my_ispc_task(input, output, N); 
}

Worker 
thread 0

Worker 
thread 1

Worker 
thread 2

Worker 
thread 3

task 0 task 1 task 2 task 99. . .
List of tasks:

Implementation of task assignment to threads: after completing current task, 
worker thread inspects list and assigns itself the next uncompleted task.

Next task ptr

task 3 task 4

ISPC runtime assigns tasks to worker threads
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Orchestration
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems 
(a.k.a. “tasks”, 
“work to do”)

Parallel Threads ** 
(“workers”)

Parallel program 
(communicating 

threads)

Execution on 
parallel machine ** I had to pick a term
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Orchestration
▪ Involves: 

- Structuring communication 
- Adding synchronization to preserve dependencies if necessary 
- Organizing data structures in memory 
- Scheduling tasks 

▪ Goals: reduce costs of communication/sync, preserve locality of data reference, reduce 
overhead, etc. 

▪ Machine details impact many of these decisions 
- If synchronization is expensive, programmer might use it more sparsely
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Mapping to hardware
Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems 
(a.k.a. “tasks”, 
“work to do”)

Parallel Threads ** 
(“workers”)

Parallel program 
(communicating 

threads)

Execution on 
parallel machine ** I had to pick a term
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Mapping to hardware
▪ Mapping “threads” (“workers”) to hardware execution units 

▪ Example 1: mapping by the operating system 
- e.g., map a thread to HW execution context on a CPU core 

▪ Example  2: mapping by the compiler 
- Map ISPC program instances to vector instruction lanes 

▪ Example 3: mapping by the hardware 
- Map CUDA thread blocks to GPU cores (discussed in future lecture) 

▪ Some interesting mapping decisions: 
- Place related threads (cooperating threads) on the same processor 

(maximize locality, data sharing, minimize costs of comm/sync) 
- Place unrelated threads on the same processor (one might be bandwidth limited and another might be compute limited) to 

use machine more e#ciently
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Example: mapping to hardware
▪ Consider an application that creates two threads 
▪ The application runs on the processor shown below 

- Two cores, two-execution contexts per core, up to instructions per clock, one instruction is an 8-wide SIMD instruction.

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping the applications’s threads to 
the processor’s thread execution contexts? 
Answer: the operating system

▪ Question: If you were implementing the OS, how would to map the two 
threads to the four execution contexts? 

▪ Another question: How would you map 
threads to execution contexts if your C 
program spawned !ve threads?
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A parallel programming example
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A 2D-grid based solver
▪ Problem: solve partial di"erential equation (PDE) on (N+2) x (N+2) grid 
▪ Solution uses iterative algorithm: 

- Perform Gauss-Seidel sweeps over grid until convergence
N

N

A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] 

                       + A[i,j+1] + A[i+1,j]); 

Grid solver example from: Culler, Singh, and Gupta 
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Grid solver algorithm: !nd the dependencies
C-like pseudocode for sequential algorithm is provided below

const int n; 
float* A;                    // assume allocated for grid of N+2 x N+2 elements 

void solve(float* A) { 

  float diff, prev; 
  bool done = false; 

  while (!done) {                       // outermost loop: iterations 
    diff = 0.f;                       
    for (int i=1; i<n i++) {            // iterate over non-border points of grid 
      for (int j=1; j<n; j++) { 
        prev = A[i,j]; 
        A[i,j] = 0.2f * (A[i,j] + A[i,j-1] + A[i-1,j] + 
                                  A[i,j+1] + A[i+1,j]); 
        diff += fabs(A[i,j] - prev);    // compute amount of change 
      } 
    } 
    
    if (diff/(n*n) < TOLERANCE)         // quit if converged 
      done = true; 
  } 
} 
 

Grid solver example from: Culler, Singh, and Gupta 
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Step 1: identify dependencies 
(problem decomposition phase)

N

N
......

Each row element depends on element to left. 

Each row depends on previous row.

Note: the dependencies illustrated on this slide are grid 
element data dependencies in one iteration of the solver 
(in one iteration of the “while not done” loop)
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Step 1: identify dependencies 
(problem decomposition phase)

N

N
......

There is independent work along the diagonals! 

Good: parallelism exists! 

Possible implementation strategy: 
1. Partition grid cells on a diagonal into tasks 
2. Update values in parallel 
3. When complete, move to next diagonal 

Bad: independent work is hard to exploit 
Not much parallelism at beginning and end of computation. 
Frequent synchronization (after completing each diagonal)
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Let’s make life easier on ourselves
▪ Idea: improve performance by changing the algorithm to one that is more amenable 

to parallelism 

- Change the order that grid cell cells are updated 

- New algorithm iterates to same solution (approximately), but converges to solution 
di"erently 
- Note: $oating-point values computed are di"erent, but solution still converges to within error threshold 

- Yes, we needed domain knowledge of the Gauss-Seidel method to realize this 
change is permissible 
- But this is a common technique in parallel programming
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New approach: reorder grid cell update via red-black coloring
Reorder grid traversal: red-black coloring

N

N

Update all red cells in parallel 

When done updating red cells , 
update all black cells in parallel 
(respect dependency on red cells) 

Repeat until convergence
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Possible assignments of work to processors
Reorder grid traversal: red-black coloring

Question: Which is better? Does it matter? 
Answer: it depends on the system this program is running on
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Consider dependencies in the program
1. Perform red cell update in parallel 
2. Wait until all processors done with update 
3. Communicate updated red cells to other processors 
4. Perform black cell update in parallel 
5. Wait until all processors done with update 
6. Communicate updated black cells to other processors 
7. Repeat

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4
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Communication resulting from assignment
Reorder grid traversal: red-black coloring

= data that must be sent to P2 each iteration
Blocked assignment requires less data to be communicated between processors 
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Two ways to think about writing this program 
▪ Data parallel thinking 

▪ SPMD / shared address space
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Data-parallel expression of solver
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const int n;                          

float* A = allocate(n+2, n+2));   // allocate grid 

void solve(float* A) { 

   bool done = false; 
   float diff = 0.f; 
   while (!done) { 
     for_all (red cells (i,j)) { 
         float prev = A[i,j]; 
         A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + 
                          A[i+1,j] + A[i,j+1]); 
         reduceAdd(diff, abs(A[i,j] - prev)); 
     } 
    
     if (diff/(n*n) < TOLERANCE) 
         done = true;     
    } 
} 

Data-parallel expression of grid solver
Note: to simplify pseudocode: just showing red-cell update

Decomposition: 
processing individual 
grid elements constitutes 
independent work

Assignment: ???

Orchestration: 
handled by system 
(End of for_all block is implicit wait for all 
workers before returning to sequential control)

Grid solver example from: Culler, Singh, and Gupta 

Orchestration: handled by system 
(builtin communication primitive: reduceAdd)
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Shared address space (with SPMD 
threads) expression of solver
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Shared address space expression of solver
SPMD execution model

▪ Programmer is responsible for synchronization 

▪ Common synchronization primitives: 
- Locks (provide mutual exclusion): only one 

thread in the critical region at a time 
- Barriers: wait for threads to reach this point

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4
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int     n;               // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   float myDiff;  
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     float myDiff = 0.f; 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]); 
           myDiff += abs(A[i,j] - prev)); 
     } 
     lock(myLock); 
     diff += myDiff; 
     unlock(myLock); 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver

Value of threadId is di"erent for each SPMD instance: 
use value to compute region of grid to work on

Each thread computes the rows it is responsible for updating

Grid solver example from: Culler, Singh, and Gupta 

Assume these are global variables 
(accessible to all threads)
Assume solve function is executed by all threads. 
(SPMD-style)

(pseudocode in SPMD execution model)
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int     n;               // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   float myDiff;  
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     float myDiff = 0.f; 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]); 
           myDiff += abs(A[i,j] - prev)); 
     } 
     lock(myLock); 
     diff += myDiff; 
     unlock(myLock); 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver

Do you see a potential performance 
problem with this implementation?

Grid solver example from: Culler, Singh, and Gupta 

(pseudocode in SPMD execution model)
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int     n;                  // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   float myDiff;  
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     float myDiff = 0.f; 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]); 
           myDiff += abs(A[i,j] - prev)); 
     } 
     lock(myLock); 
     diff += myDiff; 
     unlock(myLock); 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver

Compute partial sum per worker

Now only only lock once per thread, 
not once per  (i,j) loop iteration!

Grid solver example from: Culler, Singh, and Gupta 

Improve performance by accumulating into partial 
sum locally, then complete global reduction at the 
end of the iteration.

(pseudocode in SPMD execution model)
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Barrier synchronization primitive
▪ barrier(num_threads)  

▪ Barriers are a conservative way to express dependencies 
▪ Barriers divide computation into phases 
▪ All computations by all threads before the barrier complete 

before any computation in any thread after the barrier begins 
- In other words, all computations after the barrier are 

assumed to depend on all computations before the barrier

Barrier

Barrier

Compute red cells

Compute black cells

P1 P2 P3 P4
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int     n;               // grid size 
bool    done = false; 
float   diff = 0.0; 
LOCK    myLock; 
BARRIER myBarrier; 

// allocate grid 
float* A = allocate(n+2, n+2); 

void solve(float* A) { 
   float myDiff;  
   int threadId = getThreadId(); 
   int myMin = 1 + (threadId * n / NUM_PROCESSORS); 
   int myMax = myMin + (n / NUM_PROCESSORS)   
    
   while (!done) { 
     float myDiff = 0.f; 
     diff = 0.f; 
     barrier(myBarrier, NUM_PROCESSORS); 
     for (j=myMin to myMax) { 
        for (i = red cells in this row) { 
           float prev = A[i,j]; 
           A[i,j] = 0.2f * (A[i-1,j] + A[i,j-1] + A[i,j] + A[i+1,j], A[i,j+1]); 
           myDiff += abs(A[i,j] - prev)); 
     } 
     lock(myLock); 
     diff += myDiff; 
     unlock(myLock); 
     barrier(myBarrier, NUM_PROCESSORS); 
     if (diff/(n*n) < TOLERANCE)            // check convergence, all threads get same answer 
         done = true; 
     barrier(myBarrier, NUM_PROCESSORS); 
   } 
}

Shared address space solver
Why are there three barriers?

Grid solver example from: Culler, Singh, and Gupta 



 Stanford CS149, Fall 2021

Shared address space solver: one barrier
int     n;               // grid size 
bool    done = false; 
LOCK    myLock; 
BARRIER myBarrier; 
float diff[3];  // global diff, but now 3 copies 

float *A = allocate(n+2, n+2); 

void solve(float* A) { 
  float myDiff;   // thread local variable 
  int index = 0;  // thread local variable 

  diff[0] = 0.0f; 
  barrier(myBarrier, NUM_PROCESSORS);  // one-time only: just for init 

  while (!done) { 
    myDiff = 0.0f; 
    // 
    // perform computation (accumulate locally into myDiff)  
    // 
    lock(myLock); 
    diff[index] += myDiff;    // atomically update global diff 
    unlock(myLock); 
    diff[(index+1) % 3] = 0.0f; 
    barrier(myBarrier, NUM_PROCESSORS); 
    if (diff[index]/(n*n) < TOLERANCE) 
      break; 
    index = (index + 1) % 3; 
  } 
}

Idea: 
Remove dependencies by using di"erent diff 
variables in successive loop iterations 

Trade o" footprint for removing dependencies! 
(a common parallel programming technique)   

Grid solver example from: Culler, Singh, and Gupta 
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Grid solver implementation in two programming models

▪ Data-parallel programming model 
- Synchronization: 

- Single logical thread of control, but iterations of forall loop may be parallelized by the system (implicit 
barrier at end of forall loop body) 

- Communication 
- Implicit in loads and stores (like shared address space) 
- Special built-in primitives for more complex communication patterns: 

e.g., reduce 

▪ Shared address space 
- Synchronization: 

- Mutual exclusion required for shared variables (e.g., via locks) 
- Barriers used to express dependencies (between phases of computation) 

- Communication 
- Implicit in loads/stores to shared variables
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Summary
▪ Amdahl’s Law 

- Overall maximum speedup from parallelism is limited by amount of serial execution in a program 

▪ Aspects of creating a parallel program 
- Decomposition to create independent work, assignment of work to workers, orchestration (to coordinate 

processing of work by workers), mapping to hardware 
- We’ll talk a lot about making good decisions in each of these phases in the coming lectures (in practice, 

they are very inter-related) 

▪ Focus today: identifying dependencies 

▪ Focus soon: identifying locality, reducing synchronization


