
Parallel Computing
Stanford CS149, Fall 2021

Lecture 15:

Heterogeneous Parallelism,
Hardware Specialization, DSLs

Stanford CS149, Fall 2021

Review: Transactional Memory
▪ Atomic construct: declaration that atomic behavior must be preserved by the system

- Motivating idea: increase simplicity of synchronization without (significantly) sacrificing performance
▪ Transactional memory implementation

- Many variants have been proposed: SW, HW, SW+HW
- Implementations differ in:

- Data versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity (object, word, cache line)

▪ Software TM systems (STM)
- Compiler adds code for versioning & conflict detection

- Note: STM barrier = instrumentation code (e.g. StmRead, StmWrite)
- Basic data-structures

- Transactional descriptor per thread (status, rd/wr set, …)
- Transactional record per data (locked/version)

▪ Hardware Transactional Memory (HTM)
- Versioned data is kept in caches
- Conflict detection mechanisms augment coherence protocol

Stanford CS149, Fall 2021

HTM Example: Transactional Coherence and Consistency
▪ Use TM as the coherence mechanism è all transactions all the time

▪ Successful transaction commits update memory and all caches in the system

▪ Assumptions
- One “commit” per execution step across all processors

- When one transaction causes another transaction to abort and re-execute, assume that the transaction “commit”
of one transaction can overlap with the “begin” of the re-executing transaction

- Minimize the number of execution steps

P1 P2 P3
Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

Stanford CS149, Fall 2021

HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

Stanford CS149, Fall 2021

HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:4 W B, 6 E:3 B:6

Stanford CS149, Fall 2021

HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:4 W B, 6 E:3 B:6

R A A:1 C:4 W C, 7 E:3 B:6,C:7

W E, 6 A:1 C:4,E:5 R F E:3,F:0 B:6,C:7

A:1 C:4,E:5 C T4 E:3,F:0 B:6,C:7

Stanford CS149, Fall 2021

HTM Example: Transactional Coherence and Consistency
P1 P2 P3

Begin T1
Read A
Write A, 1
Write C, 2
Read D
Commit T1

Begin T2
Read A
Write E, 3
Commit T2
Begin T3
Write C, 4
Read A
Write E, 5
Commit T3

Begin T4
Read E
Write B, 6
Write C, 7
Read F
Commit T4

P1 P2 P3
Action Read set Write set Action Read set Write set Action Read set Write set

B T1 B T2 B T4

R A A:0 R A A:0 R E E:0

W A, 1 A:0 A:1 W E A:0 E:3 W B, 6 E:0 B:6

W C, 2 A:0 A:1,C:2 C T2 A:0 E:3 B T4

R D A:0,D:0 A:1,C:2 B T3 R E E:3

C T1 A:0,D:0 A:1,C:2 W C, 5 C:4 W B, 6 E:3 B:6

R A A:1 C:4 W C, 7 E:3 B:6,C:7

W E, 6 A:1 C:4,E:5 R F E:3,F:0 B:6,C:7

A:1 C:4,E:5 C T4 E:3,F:0 B:6,C:7

C T3 A:1 C:4,E:5

Stanford CS149, Fall 2021

I want to begin this lecture by reminding you…

In assignment 1 we observed that a well-optimized parallel
implementation of a compute-bound application is about 40 times

faster on my quad-core laptop than the output of single-threaded C code
compiled with gcc -O3.

(In other words, a lot of software makes inefficient use of modern CPUs.)

Today we’re going to talk about how inefficient the CPU in that laptop is,
even if you are using it as efficiently as possible.

Stanford CS149, Fall 2021

Heterogeneous processing
Observation: most “real world” applications have complex
workload characteristics

They have components that can
be widely parallelized.

And components that are
difficult to parallelize.

They have components that are
amenable to wide SIMD
execution.

And components that are not.
(divergent control flow)

They have components with
predictable data access

And components with unpredictable
access, but those accesses might
cache well.

Idea: the most efficient processor is a heterogeneous mixture of
resources (“use the most efficient tool for the job”)

Stanford CS149, Fall 2021

Examples of heterogeneity

Stanford CS149, Fall 2021

Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture)

4 CPU cores + graphics cores + media accelerators

CPU
core

CPU
core

CPU
core

CPU
core

Integrated
Gen9 GPU

graphics + media
Shared LLC

System
Agent

(display,
memory,

I/O
controllers)

Stanford CS149, Fall 2021

Example: Intel “Skylake" (2015)
(6th Generation Core i7 architecture)

▪ CPU cores and graphics cores share
same memory system

▪ Also share LLC (L3 cache)
- Enables, low-latency, high-

bandwidth communication between
CPU and integrated GPU

▪ Graphics cores are cache coherent
with CPU cores

CPUcore

CPUcore CPUcore

CPUcore

Integrated
Gen9 GPU

graphics +
media

Shared LLC

System
Agent

(display,
memory,

I/O)

Stanford CS149, Fall 2021

More heterogeneity: add discrete GPU

High-end discrete GPU
(AMD or NVIDIA)

PCIe x16 bus

DDR5 Memory

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for basic graphics/window manager/UI

Memory controllerL3 cache (8 MB)

Ring interconnect

DDR3 Memory

CPU Core 0 CPU Core 3… Gen9 Graphics

Stanford CS149, Fall 2021

Mobile heterogeneous processors

Apple A11 Bionic *
Two “high performance” 64 bit ARM CPU cores
Four “low performance” ARM CPU cores
Three “core” Apple-designed GPU
Image processor
Neural Engine for DNN acceleration
Motion processor

NVIDIA Tegra X1
Four ARM Cortex A57 CPU cores for applications
Four low performance (low power) ARM A53 CPU cores
One Maxwell SMM (256 “CUDA” cores)

A11 image credit: TechInsights Inc.’
* Disclaimer: estimates by TechInsights, not an official Apple reference.

Stanford CS149, Fall 2021

GPU-accelerated supercomputing

Summit (at Oak Ridge National Lab)
(world’s #1 in Fall 2018)
9,216 IBM Power9 22-core CPUs
27,648 NVIDIA V100 GPUs
10 Petabytes DRAM

Stanford CS149, Fall 2021

Energy-constrained computing

Stanford CS149, Fall 2021

Performance and Power

Specialization (fixed function) ⇒ better energy efficiency

FIXED

Energy
efficiencyPerformance

𝑷𝒐𝒘𝒆𝒓 =
𝑶𝒑𝒔

𝒔𝒆𝒄𝒐𝒏𝒅 ×
𝑱𝒐𝒖𝒍𝒆𝒔
𝑶𝒑

What is the magnitude
of improvement from

specialization?

Stanford CS149, Fall 2021

Pursuing highly efficient processing…
(specializing hardware beyond just parallel CPUs and GPUs)

Stanford CS149, Fall 2021

Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and is not floating-point math

[Source: Chung et al. 2010 , Dally 08]

Stanford CS149, Fall 2021

Why is a “general-purpose processor” so
inefficient?

Wait… this entire class we’ve been talking about making
efficient use out of multi-core CPUs and GPUs…

and now you’re telling me these platforms are “inefficient”?

Stanford CS149, Fall 2021

Consider the complexity of executing an
instruction on a modern processor…
Read instruction
Decode instruction
Check for dependencies/pipeline hazards
Identify available execution resource
Use decoded operands to control register file SRAM (retrieve data)
Move data from register file to selected execution resource
Perform arithmetic operation
Move data from execution resource to register file
Use decoded operands to control write to register file SRAM

Translate op to uops, access uop cache, etc.

Address translation, communicate with icache, access icache, etc.

Review question:
How does SIMD execution reduce overhead of certain
types of computations?
What properties must these computations have?

[Figure credit Eric Chung]

Stanford CS149, Fall 2021

Contrast that complexity to the circuit
required to actually perform the operation

0

1

2
3

4
5

6
7

0
1

2
3

4

5

6
7

0
1

2
3

4
5

6
7

Example: 8-bit logical OR

Stanford CS149, Fall 2021

H.264 video encoding: fraction of energy consumed by
functional units is small (even when using SIMD)

FU = functional units
RF = register fetch
Ctrl = misc pipeline control

Pip = pipeline registers (interstage)

IF = instruction fetch + instruction cache
D-$ = data cache

integer motion estimation fractional (subpixel)
motion estimation

intra-frame prediction,
DTC, quantization

arithmetic encoding

Even after encoding implemented with SIMD instruction [Hameed et al. ISCA 2010]
Energy Consumption Breakdown

Stanford CS149, Fall 2021[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N) (data set size)

ASIC delivers same performance as
one CPU core with ~ 1/1000th the
chip area.

GPU cores: ~ 5-7 times more area
efficient than CPU cores.

ASIC delivers same performance
as one CPU core using only
~ 1/100th the power

Fast Fourier transform (FFT): throughput and energy
benefits of specialization

Stanford CS149, Fall 2021

Mobile: benefits of increasing efficiency
▪ Run faster for a fixed period of time

- Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once

▪ Run at a fixed level of performance for longer
- e.g., video playback, health apps
- Achieve “always-on” functionality that was previously impossible

Amazon Echo / Google Home
Always listening

iPhone:
Siri activated by button press or holding
phone up to ear

Google Glass: ~40 min
recording per charge
(nowhere near “always on”)

Stanford CS149, Fall 2021

GPU’s are themselves heterogeneous multi-core processors

GPU

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Compute resources your CUDA programs used in Assignment 2
Graphics-specific, fixed-

function compute resources

Stanford CS149, Fall 2021

Rasterization:
Determining what pixels a triangle overlaps

Example graphics tasks performed in fixed-function HW
Texture mapping:

Warping/filtering images to apply detail to surfaces

Geometric tessellation:
computing fine-scale geometry
from coarse geometry

Stanford CS149, Fall 2021

Digital signal processors (DSPs)
Programmable processors, but simpler instruction stream control paths
Complex instructions (e.g., SIMD/VLIW): perform many operations per instruction (amortize cost of control)

Example: Qualcomm Hexagon DSP
Used for modem, audio, and (increasingly) image
processing on Qualcomm Snapdragon SoC processors

VLIW: “very-long instruction word”
Single instruction specifies multiple different
operations to do at once (contrast to SIMD)

Below: innermost loop of FFT
Hexagon DSP performs 29 “RISC” ops per cycle

Hexagon DSP is in
Google Pixel phone

Stanford CS149, Fall 2021

Anton supercomputer for
molecular dynamics
▪ Simulates time evolution of proteins
▪ ASIC for computing particle-particle interactions (512 of them in machine)
▪ Throughput-oriented subsystem for efficient fast-fourier transforms

▪ Custom, low-latency communication

network designed for communication patterns
of N-body simulations

[Developed by DE Shaw Research]

Stanford CS149, Fall 2021

Specialized processors for evaluating deep networks
Example: Google’s Tensor Processing Unit (TPU)
Accelerates deep learning operations

Countless recent papers at top computer
architecture research conferences on the
topic of ASICs or accelerators for deep
learning or evaluating deep networks…

Intel Lake Crest ML accelerator
(formerly Nervana)

Stanford CS149, Fall 2021

Example: Google’s Pixel Visual Core
Programmable “image processing unit” (IPU)

▪ Each core = 16x16 grid of 16 bit
multiply-add ALUs

▪ ~10-20x more efficient than
GPU at image processing tasks
(Google’s claims at HotChips ’18)

Stanford CS149, Fall 2021

Let’s crack open a modern smartphone

Multi-core GPU
(3D graphics,

OpenCL data-parallel compute)

Display engine
(compresses pixels for

transfer to high-res screen)

Image Signal Processor
ASIC for processing camera

sensor pixels

Multi-core ARM CPU
4 “big cores” + 4 “little cores”

Video encode/decode ASIC

“Hexagon”
Programmable DSP
data-parallel multi-media

processing

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core
Programmable image

processor and DNN accelerator

Stanford CS149, Fall 2021

FPGAs (Field Programmable Gate Arrays)
▪ Middle ground between an ASIC and a processor
▪ FPGA chip provides array of logic blocks, connected by interconnect
▪ Programmer-defined logic implemented directly by FGPA

Programmable lookup table (LUT)
Flip flop (a register)

Image credit: Bai et al. 2014

Stanford CS149, Fall 2021

Specifying combinatorial logic as a LUT
▪ Example: 6-input, 1 output LUT in Xilinx Virtex-7 FPGAs

- Think of a LUT6 as a 64 element table

LUT6

Image credit: [Zia 2013]

in0

out0

in1

in2

in3

in4

in5

0
1
2
3

63

…

0
0
0
0

1

…

In OutExample:
6-input AND

40-input AND constructed by chaining
outputs of eight LUT6’s (delay = 3)

Stanford CS149, Fall 2021

Modern FPGAs
▪ A lot of area devoted to hard

gates
- Memory blocks (SRAM)
- DSP blocks (multiplier)

Stanford CS149, Fall 2021

Project Catapult
▪ Microsoft Research investigation of use of

FPGAs to accelerate datacenter workloads
▪ Demonstrated offload of part of Bing search’s

document ranking logic

1U server (Dual socket CPU + FPGA connected via PCIe bus)

FPGA board

[Putnam et al. ISCA 2014]

Stanford CS149, Fall 2021

Amazon F1
▪ FPGA’s are now available on Amazon cloud services

Stanford CS149, Fall 2021

Summary: choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented

processor (GPU)

~10X more efficient

Credit: Pat Hanrahan for this slide design

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

Programmable DSP
FPGA/

reconfigurable logic

~100X???
(jury still out)

Easiest to program Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions

of dollars to design /
verify / create

Stanford CS149, Fall 2021

Challenges of heterogeneous designs:

(it’s not easy to realize the potential of
specialized, heterogeneous processing)

Stanford CS149, Fall 2021

Challenges of heterogeneity
▪ Heterogeneous system: preferred processor for each task
▪ Challenge to software developer: how to map application

onto a heterogeneous collection of resources?
- Challenge: “Pick the right tool for the job”: design algorithms that decompose into

components that each map well to different processing components of the machine

- The scheduling problem is more complex on a heterogeneous system

▪ Challenge for hardware designer: what is the right mixture of
resources?
- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)

- How much chip area should be dedicated to a specific function, like video?

Stanford CS149, Fall 2021

Reducing energy consumption idea 1:
use specialized processing

(use the right processor for the job)

Reducing energy consumption idea 2:
move less data

Stanford CS149, Fall 2021

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,

radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values,
rather than storing and reloading
them, is a better answer when
optimizing code for energy
efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm

Stanford CS149, Fall 2021

Three trends in energy-optimized computing
▪ Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts
may not be desirable even if they run faster

▪ Specialize compute units:
- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)
- Fixed-function units: audio processing, “movement sensor processing” video decode/encode,

image processing/computer vision?
- Specialized instructions: expanding set of AVX vector instructions, new instructions for

accelerating AES encryption (AES-NI)
- Programmable soft logic: FPGAs

▪ Reduce bandwidth requirements
- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)
- Aggressive use of compression: perform extra computation to compress application data before

transferring to memory (likely to see fixed-function HW to reduce overhead of general data
compression/decompression)

Stanford CS149, Fall 2021

Summary: heterogeneous processing for efficiency
▪ Heterogeneous parallel processing: use a mixture of computing resources

that fit mixture of needs of target applications
- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-specialized

fixed-function processors

- Examples exist throughout modern computing: mobile processors, servers, supercomputers

▪ Traditional rule of thumb in “good system design” is to design simple,
general-purpose components
- This is not the case in emerging systems (optimized for perf/watt)

- Today: want collection of components that meet perf requirement AND minimize energy use

▪ Challenge of using these resources effectively is pushed up to the
programmer
- Current CS research challenge: how to write efficient, portable programs for emerging

heterogeneous architectures?

Stanford CS149, Fall 2021

Heterogeneous Parallel Programming Today

Intel
Skylake

Nvidia
Fermi

Cray
Jaguar

MPI
PGAS
Spark

Pthreads
OpenMP

IPSC

CUDA
OpenCL

Altera
FPGA

Verilog
VHDL

Stanford CS149, Fall 2021

EXPERT PROGRAMMERS ⇒ LOW PRODUCTIVITY

Stanford CS149, Fall 2021

Expert Programming is Difficult

Optimizations:

• Precomputing twiddle

•Not computing what not part
of the filter

• Transposing the matrix

•Using SSE

~3 orders of
magnitude

Image Filter in OpenMP

Stanford CS149, Fall 2021

Big-Data Analytics Programming Challenge

Multicore

GPU

Pthreads
OpenMP

CUDA
OpenCL

Predictive
Analytics

Data Prep

Data
Transform

Network
Analysis

Ideal Parallel
Programming

Language

Cluster
MPI

Map Reduce
Spark

FPGAVerilog
VHDL

Data Analytics
Application

Stanford CS149, Fall 2021

Performance

Productivity Generality

The Ideal Parallel Programming Language

Stanford CS149, Fall 2021

Successful Languages (not exhaustive ;-))

Performance

Productivity Generality

Stanford CS149, Fall 2021

Way Forward ⇒ Domain Specific Languages

Domain
Specific

Languages

Performance
(Heterogeneous Parallelism)

Productivity Generality

Stanford CS149, Fall 2021

DSL Hypothesis

It is possible to write one program
and

run it efficiently on heterogeneous
parallel systems

Stanford CS149, Fall 2021

Domain Specific Languages
▪ Domain Specific Languages (DSLs)

- Programming language with restricted expressiveness for a particular domain
- High-level, usually declarative, and deterministic

Stanford CS149, Fall 2021

Domain-specific programming systems
▪ Main idea: raise level of abstraction for expressing programs

- Goal: write one program, and run it efficiently on different machines
▪ Introduce high-level programming primitives specific to an application domain

- Productive: intuitive to use, portable across machines, primitives correspond
to behaviors frequently used to solve problems in targeted domain

- Performant: system uses domain knowledge to provide efficient, optimized
implementation(s)
- Given a machine: system knows what algorithms to use, parallelization

strategies to employ for this domain

- Optimization goes beyond efficient mapping of software to hardware!
The hardware platform itself can be optimized to the abstractions as well

▪ Cost: loss of generality/completeness

Stanford CS149, Fall 2021

Building DSLs
▪ External DSL

- An external DSL is implemented as a standalone language

- Matlab, SQL

- + Flexible syntax and semantics, simplicity

- – YAPL, interpretations slow, no tool chain (IDE, debugger, prof, …

▪ Embedded (Internal) DSL

- An internal DSL is embedded within another language. Ideally, the host
language has features that make it easy to build DSLs

- OptiML(Scala), Halide(C++), PyTorch(Python), TensorFlow(Python)

- +Familiar syntax, access to general purpose features, tool chain

- –verbose syntax, hard to limit features, hard to debug DSLs, slow
interpreters

- a

Stanford CS149, Fall 2021

Delite: A Framework for High Performance DSLs

▪ Overall Approach: Generative Programming for “Abstraction without regret”
- Embed compilers in Scala libraries: Scala does syntax and type checking
- Use metaprogramming with LMS (type-directed staging) to build an

intermediate representation (IR) of the user program
- Optimize IR and map to multiple targets

▪ Goal: Make embedded DSL compilers easier to develop than stand alone DSLs
- As easy as developing a library

Stanford CS149, Fall 2021

OptiML: Overview
▪ Provides a familiar (MATLAB-like) language and API for writing ML applications

- Ex. val c = a * b (a, b are Matrix[Double])

▪ Implicitly parallel data structures
- Base types

- Vector[T], Matrix[T], Graph[V,E], Stream[T]

- Subtypes
- TrainingSet, IndexVector, Image, …

▪ Implicitly parallel control structures
- sum{…}, (0::end) {…}, gradient { … }, untilconverged { … }

- Allow anonymous functions with restricted semantics to be passed as arguments of the control structures

Stanford CS149, Fall 2021

K-means Clustering in OptiML

untilconverged(kMeans, tol){kMeans =>
val clusters = samples.groupRowsBy { sample =>

kMeans.mapRows(mean => dist(sample, mean)).minIndex
}
val newKmeans = clusters.map(e => e.sum / e.length)
newKmeans

}

calculate
distances to
current means

assign each
sample to the
closest mean

move each cluster centroid to the
mean of the points assigned to it

• No explicit map-
reduce, no key-value
pairs

• No distributed data
structures (e.g. RDDs)

• No annotations for
hardware design

• Efficient multicore and
GPU execution

• Efficient cluster
implementation

• Efficient FPGA
hardware

Stanford CS149, Fall 2021

Importance of DSLs is Growing
▪ Linear Algebra

- Matlab

▪ Data processing

- SQL

▪ Machine Learning

- PyTorch

- TensorFlow

▪ Image processing

- Halide

▪ Key question

- How to design and implement high-performance DSLs that support heterogeneous computing

Stanford CS149, Fall 2021

A DSL example:
Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]

