Lecture 19:

Efficiently Evaluating DNNs

Parallel Computing
Stanford CS149, Fall 2021

Today

- We will discuss the workload of evaluating deep neural networks (performing "inference")
- This lecture will be heavily biased towards concerns of DNNs that process images (to be honest, because that is what your instructor knows best)
- But, image processing is not the application driving the majority of DNN evaluation in the world right now (its text processing, speech, ads, etc.)

Consider the following expression

What is a deep neural network?

A basic unit:

Unit with n inputs described by $n+1$ parameters (weights + bias)

Example: rectified linear unit (ReLU)

$f(x)=\max (0, x)$

Basic computational interpretation:
It is just a circuit!

Biological inspiration:

unit output corresponds loosely to activation of neuron

Machine learning interpretation:
binary classifier: interpret output as the probability of one class

$$
f(x)=\frac{1}{1+e^{-x}}
$$

Deep neural network: topology

Recall image convolution (3x3 conv)

```
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];


Convolutional layer: locally connected AND all units in layer share the same parameters (same weights + same bias): (note: network illustration above only shows links for a 1D conv: a.k.a. one iteration of ii loop)

```

float weights[] = {1.0/9, 1.0/9, 1.0/9,

```
float weights[] = {1.0/9, 1.0/9, 1.0/9,
    1.0/9, 1.0/9, 1.0/9,
    1.0/9, 1.0/9, 1.0/9,
    1.0/9, 1.0/9, 1.0/9};
```

 1.0/9, 1.0/9, 1.0/9};
    ```
```

for (int j=0; j<HEIGHT; j++) {

```
for (int j=0; j<HEIGHT; j++) {
    for (int i=0; i<WIDTH; i++) {
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        float tmp = 0.f;
        for (int jj=0; jj<3; jj++)
        for (int jj=0; jj<3; jj++)
            for (int ii=0; ii<3; ii++)
```

 for (int ii=0; ii<3; ii++)
    ```
```

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
    ```
            tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
        output[j*WIDTH + i] = tmp;
        output[j*WIDTH + i] = tmp;
    }
    }
}
```

}

```

\section*{What does convolution using these filter weights do?}
\(\left[\begin{array}{lll}.111 & .111 & .111 \\ .111 & .111 & .111 \\ .111 & .111 & .111\end{array}\right] \quad\) "Box blur"


Blurred


\section*{What does convolution with these filters do?}
\[
\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right]
\]

Extracts horizontal gradients

Extracts vertical gradients

\section*{Gradient detection filters}


Horizontal gradients


\section*{Vertical gradients}

Note: you can think of a filter as a "detector" of a pattern, and the magnitude of a pixel in the output image as the "response" of the filter to the region surrounding each pixel in the input image

\section*{Applying many filters to an image at once}


\section*{Applying many filters to an image at once}

96 11x11x3 filters
(operate on RGB)


96 responses (normalized)


\section*{Adding additional layers}


\section*{Example: "AlexNet" object detection network}

Sequences of conv + reLU + pool (optional) layers
Example: AlexNet [Krizhevsky12]: 5 convolutional layers + 3 fully connected layers


Another example: VGG-16 [Simonyan15]: 13 convolutional layers
input: \(224 \times 224\) RGB
conv/reLU: 3x3x3x64 conv/reLU: 3x3x64x64 maxpool conv/reLU: \(3 \times 3 \times 64 \times 128\) conv/reLU: 3x3x128x128 maxpool
conv/reLU: \(3 \times 3 \times 128 \times 256\)
conv/reLU: \(3 \times 3 \times 256 \times 256\) conv/reLU: 3x3x256x256 maxpool
conv/reLU: \(3 \times 3 \times 256 \times 512\) conv/reLU: \(3 \times 3 \times 512 \times 512\) conv/reLU: \(3 \times 3 \times 512 \times 512\) maxpool
conv/reLU: \(3 \times 3 \times 512 \times 512\)
conv/reLU: \(3 \times 3 \times 512 \times 512\)
conv/reLU: \(3 \times 3 \times 512 \times 512\)
maxpool
fully-connected 4096 fully-connected 4096 fully-connected 1000 soft-max

\section*{Why deep?}


Left: what pixels in image patch trigger the response
Right: images that generate strongest response for filters at each layer




\section*{More recent imaqe understanding networks}


ResNet (34 layer version)


\section*{Efficiently implementing convolution layers}

\section*{Dense matrix multiplication}
float A[M][K];
float B[K][N];
float C[M][N];
// compute C += A * B
\#pragma omp parallel for for (int \(\mathbf{j = 0 ; ~} \mathbf{j}<\mathrm{M}\); \(\mathbf{j + +}\) )


What is the problem with this implementation?
Low arithmetic intensity (does not exploit temporal locality in access to A and B)

\section*{Blocked dense matrix multiplication}


Idea: compute partial result for block of \(C\) while required blocks of \(A\) and \(B\) remain in cache (Assumes BLOCKSIZE chosen to allow block of \(\mathrm{A}, \mathrm{B}\), and C to remain resident)

Self check: do you want as big a BLOCKSIZE as possible? Why?

\section*{Hierarchical blocked matrix mult}

Exploit multiple levels of memory hierarchy
```

float A[M][K];
float B[K][N];
float C[M][N];
// compute C += A * B
\#pragma omp parallel for
for (int jblock2=0; jblock2<M; jblock2+=L2_BLOCKSIZE_J)
for (int iblock2=0; iblock2<N; iblock2+=L2_BLOCKSIZE_I)
for (int kblock2=0; kblock2<K; kblock2+=L2_BLOCKSIZE_K)
for (int jblock1=0; jblock1<L1_BLOCKSIZE_J; jblock1+=L1_BLOCKSIZE_J)
for (int iblock1=0; iblock1<L1_BLOCKSIZE_I; iblock1+=L1_BLOCKSIZE_I)
for (int kblock1=0; kblock1<L1_BLOCKSIZE_K; kblock1+=L1_BLOCKSIZE_K)
for (int j=0; j<BLOCKSIZE_J; j++)
for (int i=0; i<BLOCKSIZE_I; i++)
for (int k=0; k<BLOCKSIZE_K; k++)

```

Not shown: final level of "blocking" for register locality...

\section*{Blocked dense matrix multiplication (1)}

\section*{Consider SIMD parallelism within a block}

for (int j=0; j<BLOCKSIZE_J; j++) \{
for (int \(\left.i=0 ; i<B L O C K S I Z E \_I ; ~ i+=S I M D \_W I D T H\right) ~\{\) simd_vec C_accum = vec_load(\&C[jblock+j][iblock+i]); for (int \(k=0\); \(\left.k<b L O C K S I Z E \_K ; ~ k++\right) ~\{~\) \(/ / C=A * B+C\) simd_vec \(A_{\text {_val }}=\operatorname{splat}(\& A[j b l o c k+j][k b l o c k+k])\); // load a single element in vector register simd_muladd(A_val, vec_load(\&B[kblock+k][iblock+i]), C_accum);
        \}
        vec_store(\&C[jblock+j][iblock+i], C_accum);
    \}
\}

\section*{Vectorize iloop}

Good: also improves spatial locality in access to B
Bad: working set increased by SIMD_WIDTH, still walking over B in large steps

\section*{Blocked dense matrix multiplication (2)}

```

for (int j=0; j<BLOCKSIZE_J; j++)
for (int i=0; i<BLOCKSIZE_I; i++) {
float C_scalar = C[jblock+j][iblock+i];
// C_scalar += dot(row of A,row of B)
for (int k=0; k<BLOCKSIZE_K; k+=SIMD_WIDTH) {
C_scalar += simd_dot(vec_load(\&A[jblock+j][kblock+k]), vec_load(\&Btrans[iblock+i][[kblock+k]);
}
C[jblock+j][iblock+i] = C_scalar;
}

```

Assume i dimension is small. Previous vectorization scheme (1) would not work well.
Pre-transpose block of B (copy block of B to temp buffer in transposed form) Vectorize innermost loop

\section*{Blocked dense matrix multiplication (3)}
```

BLOCKSIZE J
BLOCKSIZE_J

```
BLOCKSIZE_J
```

BLOCKSIZE_J

```

B
```

```
// assume blocks of A and C are pre-transposed as Atrans and Ctrans
```

// assume blocks of A and C are pre-transposed as Atrans and Ctrans
for (int j=0; j<BLOCKSIZE_J; j+=SIMD_WIDTH) {
for (int j=0; j<BLOCKSIZE_J; j+=SIMD_WIDTH) {
for (int i=0; i<BLOCKSIZE_I; i+=SIMD_WIDTH) {
for (int i=0; i<BLOCKSIZE_I; i+=SIMD_WIDTH) {
simd_vec C_accum[SIMD_WIDTH];
simd_vec C_accum[SIMD_WIDTH];
for (int k=0; k<SIMD_WIDTH; k++) // load C_accum for a SIMD_WIDTH x SIMD_WIDTH chunk of C^T
for (int k=0; k<SIMD_WIDTH; k++) // load C_accum for a SIMD_WIDTH x SIMD_WIDTH chunk of C^T
C_accum[k] = vec_load(\&Ctrans[iblock+i+k][jblock+j]);
C_accum[k] = vec_load(\&Ctrans[iblock+i+k][jblock+j]);
for (int k=0; k<BLOCKSIZE_K; k++) {
for (int k=0; k<BLOCKSIZE_K; k++) {
simd_vec bvec = vec_load(\&B[kblock+k][iblock+i]);
simd_vec bvec = vec_load(\&B[kblock+k][iblock+i]);
for (int kk=0; kk<SIMD_WIDTH; kk++) // innermost loop items not dependent
for (int kk=0; kk<SIMD_WIDTH; kk++) // innermost loop items not dependent
simd_muladd(vec_load(\&Atrans[kblock+k][jblock+j], splat(bvec[kk]), C_accum[kk]);
simd_muladd(vec_load(\&Atrans[kblock+k][jblock+j], splat(bvec[kk]), C_accum[kk]);
}
}
for (int k=0; k<SIMD_WIDTH; k++)
for (int k=0; k<SIMD_WIDTH; k++)
vec_store(\&Ctrans[iblock+i+k][jblock+j], C_accum[k]);
vec_store(\&Ctrans[iblock+i+k][jblock+j], C_accum[k]);
}
}
}

```

\section*{Convolution as matrix-vector product}

\section*{Construct matrix from elements of input image}

\(\mathrm{O}(\mathrm{N})\) storage overhead for filter with N elements Must construct input data matrix


Note: 0-pad matrix

\section*{\(3 \times 3\) convolution as matrix-vector product}

\section*{Construct matrix from elements of input image}

\(0(N)\) storage overhead for filter with N elements Must construct input data matrix


Note: 0-pad matrix

\section*{Multiple convolutions as matrix-matrix mult}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline\(X_{00}\) & \(X_{01}\) & \(X_{02}\) & \(X_{03}\) & \(\cdots\) & & & \\
\hline\(X_{10}\) & \(X_{11}\) & \(X_{12}\) & \(X_{13}\) & \(\cdots\) & & & \\
\hline\(X_{20}\) & \(X_{21}\) & \(X_{22}\) & \(X_{23}\) & \(\cdots\) & & & \\
\hline\(X_{30}\) & \(X_{31}\) & \(X_{32}\) & \(X_{33}\) & \(\cdots\) & & & \\
\hline\(\cdots\) & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
num filters


\section*{Multiple convolutions on multiple input channels}


For each filter, sum responses over input channels

Equivalent to ( \(3 \times 3 \times\) num_channels) convolution on (W x H x num_channels) input data


\section*{Direct implementation of conv layer}
```

float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH];
float output[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS];
float layer_weights[LAYER_NUM_FILTERS][LAYER_CONVY][LAYER_CONVX][INPUT_DEPTH];
// assumes convolution stride is 1
for (int img=0; img<IMAGE_BATCH_SIZE; img++)
for (int j=0; j<INPUT_HEIGHT; j++)
for (int i=0; i<INPUT_WIDTH; i++)
for (int f=0; f<LAYER_NUM_FILTERS; f++) {
output[img][j][i][f] = 0.f;
for (int kk=0; kk<INPUT_DEPTH; kk++) // sum over filter responses of input channels
for (int jj=0; jj<LAYER_FILTER_Y; jj++) // spatial convolution (Y)
for (int ii=0; ii<LAYER_FILTER_X; ii+) // spatial convolution (X)
output[img][j][i][f] += layer_weights[f][jj][ii][kk] * input[img][j+jj][i+ii][kk];

```
            \}

Seven loops with significant input data reuse: reuse of filter weights (during convolution), and reuse of input values (across different filters)

Avoids \(\mathbf{O}(\mathrm{N})\) footprint increase by avoiding input matrix materialization
But must roll your own highly optimized implementation of complicated loop nest.

\section*{Convolutional layer in Halide}
```

int in_w, in_h, in_ch = 4; // input params: assume initialized
Func in_func;
int num_f, f_w, f_h, pad, stride; // parameters of the conv layer
Func forward = Func("conv");
Var x, y, z, n; // n is minibatch dimension
// This creates a padded input to avoid checking boundary
// conditions while computing the actual convolution
f_in_bound = BoundaryConditions::repeat_edge(in_func, 0, in_w, 0, in_h);
// Create buffers for layer parameters
Halide::Buffer<float> W(f_w, f_h, in_ch, num_f)
Halide::Buffer<float> b(num_f);
// domain of summation for filter with W x H x in_ch
RDom r(0, f_w, 0, f_h, 0, in_ch);
// Initialize to bias
forward(x, y, z, n) = b(z);
forward(x, y, z, n) += W(r.x, r.y, r.z, z) *
f_in_bound(x*stride + r.x - pad, y*stride + r.y - pad, r.z, n);

```

\section*{Consider scheduling this seven-dimensional loop nest!}

\section*{Different layers of a single DNN may benefit from unique scheduling strategies \\ Table 1. MobileNet Body Architecture}

Throughput: Input-Specialized Schedules (relative to best-on-average schedule)

[Figure credit: Mullapudi et al. 2016]

Notice sizes of weights and activations in this network: (and consider SIMD widths of modern machines). Ug!
\begin{tabular}{l|l|l}
\hline \hline Type / Stride & Filter Shape & Input Size \\
\hline Conv / s2 & \(3 \times 3 \times 3 \times 32\) & \(224 \times 224 \times 3\) \\
\hline Conv dw / s1 & \(3 \times 3 \times 32 \mathrm{dw}\) & \(112 \times 112 \times 32\) \\
\hline Conv / s1 & \(1 \times 1 \times 32 \times 64\) & \(112 \times 112 \times 32\) \\
\hline Conv dw / s2 & \(3 \times 3 \times 64 \mathrm{dw}\) & \(112 \times 112 \times 64\) \\
\hline Conv / s1 & \(1 \times 1 \times 64 \times 128\) & \(56 \times 56 \times 64\) \\
\hline Conv dw / s1 & \(3 \times 3 \times 128 \mathrm{dw}\) & \(56 \times 56 \times 128\) \\
\hline Conv / s1 & \(1 \times 1 \times 128 \times 128\) & \(56 \times 56 \times 128\) \\
\hline Conv dw / s2 & \(3 \times 3 \times 128 \mathrm{dw}\) & \(56 \times 56 \times 128\) \\
\hline Conv / s1 & \(1 \times 1 \times 128 \times 256\) & \(28 \times 28 \times 128\) \\
\hline Conv dw / s1 & \(3 \times 3 \times 256 \mathrm{dw}\) & \(28 \times 28 \times 256\) \\
\hline Conv / s1 & \(1 \times 1 \times 256 \times 256\) & \(28 \times 28 \times 256\) \\
\hline Conv dw / s2 & \(3 \times 3 \times 256 \mathrm{dw}\) & \(28 \times 28 \times 256\) \\
\hline Conv / s1 & \(1 \times 1 \times 256 \times 512\) & \(14 \times 14 \times 256\) \\
\hline 5 Conv dw / s1 & \(3 \times 3 \times 512 \mathrm{dw}\) & \(14 \times 14 \times 512\) \\
\hline Conv / s1 & \(1 \times 1 \times 512 \times 512\) & \(14 \times 14 \times 512\) \\
\hline Conv dw / s2 & \(3 \times 3 \times 512 \mathrm{dw}\) & \(14 \times 14 \times 512\) \\
\hline Conv / s1 & \(1 \times 1 \times 512 \times 1024\) & \(7 \times 7 \times 512\) \\
\hline Conv dw / s2 & \(3 \times 3 \times 1024 \mathrm{dw}\) & \(7 \times 7 \times 1024\) \\
\hline Conv / s1 & \(1 \times 1 \times 1024 \times 1024\) & \(7 \times 7 \times 1024\) \\
\hline Avg Pool / s1 & Pool \(7 \times 7\) & \(7 \times 7 \times 1024\) \\
\hline FC / s1 & \(1024 \times 1000\) & \(1 \times 1 \times 1024\) \\
\hline Softmax / s1 & Classifier & \(1 \times 1 \times 1000\) \\
\hline & & \\
\hline
\end{tabular}

\section*{Libraries offering high-performance implementations of key DNN layers}
\begin{tabular}{|c|c|}
\hline tensorflow:opss:AvgPool & Performs average pooling on the input. \\
\hline tensorflow::ops::AvgPooi3D & Performs 3D average pooling on the input. \\
\hline tensorflow::ops::AvgPool3DGrad & Computes gradients of average pooling function. \\
\hline tensorflow:opss:BiasAdd & Adds bias to value. \\
\hline tensorflow:ops::BiasAddGrad & The backward operation for "BiasAdd" on the "bias" te \\
\hline tensorflow:ops.:Conv2D & Computes a 2-D convolution given 4-D input and fi \\
\hline tensorflow:ops.:Conv2DBackpropFilter & Computes the gradients of convolution with respect t \\
\hline tensorflow: ops:: Conv2DBackproplnput & Computes the gradients of convolution with respect t \\
\hline tensorflow:ops.:Conv3D & Computes a 3-D convolution given 5-D input and fi \\
\hline tensorflow:ops::Conv3DBackpropFilterV2 & Computes the gradients of 3-D convolution with resp. \\
\hline tensorflow:ops::Conv3DBackproplnputV2 & Computes the gradients of 3-D convolution with resp. \\
\hline tensorflow:ops::DataFormatDimMap & Returns the dimension index in the destination data \(f\) \\
\hline tensorflow:ops::DataFormatvecPermute & Permute input tensor from src_format to dst_for \\
\hline tensorflow:ops::DepthwiseConv2dNative & Computes a 2-D depthwise convolution given 4-D int tensors. \\
\hline tensorflow:ops::DepthwiseConv2dNativeBackpropFilter & Computes the gradients of depthwise convolution wit \\
\hline tensorflow:ops::DepthwiseConv2dNativeBackproplnput & Computes the gradients of depthwise convolution wit \\
\hline tensorflow:ops::Dilation2D & Computes the grayscale dilation of 4-D input and 3- \\
\hline tensorflow:ops::Dilation2DBackpropFilter & Computes the gradient of morphological 2-D dilation filter. \\
\hline tensorflow:ops::Dilation2DBackproplnput & Computes the gradient of morphological 2-D dilation input. \\
\hline tensorflow:ops::Elu & Computes exponential linear: \(\exp (\) features ) - 1 otherwise \\
\hline tensorflow:ops::FractionalAvgPool & Performs fractional average pooling on the input. \\
\hline tensorflow::ops::FFractionalMaxPool & Performs fractional max pooling on the input. \\
\hline tensorflow:ops: FusedBatchNorm & Batch normalization. \\
\hline
\end{tabular}
tensorflow::ops::FusedBatchNormGrad
tensorflow:ops::FusedBatchNormGradV2 ensorflow:ops::FusedBatchNormGradV tensorflow::ops::FusedBatchNormV2 ensorflow:ops::FusedBatchNormV3 tensorflow:ops::FusedPadConv2D tensorflow:ops:.:FusedResizeAndPadConv2D tensorflow::ops::IITopk tensorflow:ops::IITopKV2
tensorflow::ops::L2Loss tensorflow::ops::LRN
tensorflow::ops::LogSoftmax
tensorflow::ops::MaxPool
tensorflow::ops::MaxPool3D
tensorflow:ops:.MaxPool3DGra tensorflow:ops::MaxPool3DGradGrad
ensorflow::ops::MaxPoolGradGrad
tensorflow:ops::MaxPoolGradGradV2 ensorflow:ops::MaxPoolGradGradWithArgmax tensorflow:ops::MaxPoolGradV2 tensorflow::ops::MaxPoolv2


tensorflow:ops.:QuantizedAvgPool tensorflow:ops:: QuantizedBatchNormWithGlobalNormalization tensorflow:ops::QuantizedBiasAdd ensorflow::ops::QuantizedConv2D

Gradient for batch normalization
Gradient for batch normalization radient for batch normalization
Batch normalization.
Batch normalization.
Performs a padding as a preprocess during a convolution.
Performs a resize and padding as a preprocess during a convolution.
Says whether the targets are in the top K predictions.
Says whether the targets are in the top K predictions.
2 Loss
Local Response Normalization.
Computes log softmax activations.
Performs max pooling on the input.
Performs 3D max pooling on the input.
Computes gradients of 3D max pooling function
Computes second-order gradients of the maxpooling function.
Computes second-order gradients of the maxpooling function.
Computes second-order gradients of the maxpooling function. Computes second-order gradients of the maxpooling function.
Computes gradients of the maxpooling function.
Performs max pooling on the input.
Performs max pooling on the input and outputs both max values and indices.

Finds values of the \(n\)-th order statistic for the last dimension.
Produces the average pool of the input tensor for quantized types.
Quantized Batch normalization.
Adds Tensor 'bias' to Tensor 'input' for Quantized types.
Computes a 2 D convolution given quantized 4 D input and filter tensors.

\section*{Libraries offering high-performance implementations of key DNN layers}

1F TensorFlow nN ops


NVIDIA cuDNN


Intel \({ }^{\circledR}\) oneAPI Deep Neural Network Library


\section*{Example: CUDNN convolution}
```

cudnnStatus_t cudnnConvolutionForward(
cudnnHandle_t handle,
const cudnnTensorDescriptor_t xDesc,
const void *x,
const cudnnFilterDescriptor_t wDesc,
const void *w,
const cudnnConvolutionDescriptor t convDesc,
cudnnConvolutionFwdAlgo_t algo,
void
*workSpace,
size_t
const void
const cudnnTensorDescriptor_t
void
workSpaceSizeInBytes
*beta,
yDesc,
*y)

```

\section*{Possible algorithms:}

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM
This algorithm expresses the convolution as a matrix product without actually explicitly forming the matrix that holds the inpu ensor data.
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
This algorithm expresses convolution as a matrix product without actually explicitly forming the matrix that holds the input tensor data, but still needs some memory workspace to precompute some indices in order to facilitate the implicit construction of the matrix that holds the input tensor data.
CUDNN_CONVOLUTION_FWD_ALGO_GEMM
This alorithm expresses the convolution as an explicit matrix product. A significant memory workspace is needed to store the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_DIRECT
This algorithm expresses the convolution as a direct convolution (for example, without implicitly or explicitly doing a matrix multiplication)

CUDNN_CONVOLUTION_FWD_ALGO_FFT
This algorithm uses the Fast-Fourier Transform approach to compute the convolution. A significant memory workspace is needed to store intermediate results.
CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING
This algorithm uses the Fast-Fourier Transform approach but splits the inputs into tiles. A significant memory workspace is Theeded to store intermediate results but less than CUDNN cONVOLUTION FWD ALGO FFT for large size images

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD
This algorithm uses the Winograd Transform approach to compute the convolution. A reasonably sized workspace is needed to store intermediate results.
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

\section*{NCHW data layout}
- \(\mathbf{N}\) is the batch size; 1 .
- \(\mathbf{C}\) is the number of feature maps (i.e., number of channels); 64.
- H is the image height; 5 .
- \(W\) is the image width; 4.

\(\mathbf{c}=\mathbf{2}\)
\begin{tabular}{|l|l|l|l|}
\hline 40 & 41 & 42 & 43 \\
\hline 44 & 45 & 46 & 47 \\
\hline 48 & 49 & 50 & 51 \\
\hline 52 & 53 & 54 & 55 \\
\hline 56 & 57 & 58 & 59 \\
\hline
\end{tabular}
\(\mathrm{c}=\mathbf{6 2}\)
\(c=63\)
\begin{tabular}{|l|l|l|l|}
1240 & 1241 & 1242 & 1243 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|}
\hline 1244 & 1245 & 1246 & 1247 \\
\hline 1248 & 124 & 1250 & 1251 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|}
1248 & 1249 & 1250 & 1251 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|}
1252 & 1253 & 1254 & 1255 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|}
1260 & 1261 & 1262 & 1263 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|}
\hline 1264 & 1265 & 1266 & 1267 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|}
1268 & 1269 & 1270 & 1271 \\
\hline
\end{tabular} \begin{tabular}{ll|l|l|l|}
1272 & 1273 & 1274 & 1275 \\
\hline
\end{tabular}
 \begin{tabular}{|l|l|l|l|}
\hline 1276 & 1277 & 1278 & 1279 \\
\hline
\end{tabular}

\section*{NHWC data layout}
- \(\mathbf{N}\) is the batch size; 1.
- C is the number of feature maps (i.e., number of channels); 64.
- \(\mathbf{H}\) is the image height; 5 .
- \(W\) is the image width; 4 .

\section*{NHWC}
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(c 0\) & \(c 1\) & \(c 2\) & \(\ldots\) & \(c 30\) & \(c 31\) \\
\hline 0 & 20 & 40 & \(\ldots\) & 600 & 620 \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\hline 1240 & 1241 & 1242 & 1243 \\
\hline 1
\end{tabular} \begin{tabular}{|l|l|l|l|}
\hline 1244 & 1245 & 1246 & 1247 \\
\hline
\end{tabular} \begin{tabular}{llll|l|}
1248 & 1249 & 1250 & 1251
\end{tabular} \begin{tabular}{lllll}
1252 & 1253 & 1254 & 1255 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|}
\hline 1256 & 1257 & 1258 & 1259 \\
\hline
\end{tabular}

1260126112621263\begin{tabular}{lll|l|l}
1260 & 1261 & 1262 & 1263 \\
1264 & 1265 & 1266 & 1267 \\
\hline
\end{tabular}
 \begin{tabular}{lllll}
1272 & 1273 & 1274 & 1275 \\
\hline
\end{tabular} \begin{tabular}{l|l|l|l|l|}
\hline 1276 & 1277 & 1278 & 1279 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{} \\
\hline C32 & \(\ldots\) & \(\ldots\) & \(\ldots\) & c62 & c63 \\
\hline 659 & \(\ldots\) & \(\ldots\) & \(\ldots\) & 1259 & 1279 \\
\hline
\end{tabular}

\section*{Memory traffic between operations}
- Consider this sequence:

- Imagine the bandwidth cost of dumping 1 GB of conv outputs to memory, and reading it back in between each op!
- But note that per-element [scale+bias] operation can easily be performed per-element right after each element is computed by conv!
- And max pool's output can be computed once every \(2 \times 2\) region of output is computed.


\section*{Fusing operations with conv layer}
```

float input[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH];
float output[IMAGE_BATCH_SIZE][INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS];
float layer_weights[LAYER_NUM_FILTERS][LAYER_CONVY][LAYER_CONVX][INPUT_DEPTH];
// assumes convolution stride is 1
for (int img=0; img<IMAGE_BATCH_SIZE; img++)
for (int j=0; j<INPUT_HEIGHT; j++)
for (int i=0; i<INPUT_WIDTH; i++)
for (int f=0; f<LAYER_NUM_FILTERS; f++) {
float tmp = 0.f;
for (int kk=0; kk<INPUT_DEPTH; kk++) // sum over filter responses of input channels
for (int jj=0; jj<LAYER_FILTER_Y; jj++) // spatial convolution (Y)
for (int ii=0; ii<LAYER_FILTER_X; ii+) // spatial convolution (X)
tmp += layer_weights[f][jj][ii][kk] * input[img][j+jj][i+ii][kk];
output[img][j][i][f] = tmp*scale + bias;
}

```

Exercise to class 1:
Is there a way to eliminate the scale/bias operation completely?

\section*{Exercise to class 2:}

How would you also"fuse" in the max pool?

\section*{Old style: hardcoded "fused" ops}
```

cudnnStatus_t cudnnConvolutionBiasActivationForward(
cudnnHandle_t
const void
handle,
*alpha1,
const cudnnTensorDescriptor_t
const void
const cudnnFilterDescriptor_t
const void
const cudnnConvolutionDescriptor_t convDesc,
cudnnConvolutionFwdAlgo_t
void
size_t
const void
const cudnnTensorDescriptor_t
const void
const cudnnTensorDescriptor_t
const void
const cudnnActivationDescriptor_t activationDesc,
const cudnnTensorDescriptor t
void *

```

This function applies a bias and then an activation to the convolutions or cross-correlations of cudnnConvolutionForward(), returning results in \(y\). The full computation follows the equation \(y=a c t\) (alpha1 * conv \((x)+a l p h a 2 * z+\) bias ).

\section*{Tensorflow:}

\section*{Fusion example: CUDNN "backend"}

Note for operation fusion use cases, there are two different mechanisms in cuDNN to support them. First, there are engines containing offline compiled
kernels that can support certain fusion patterns. These engines try to match the user provided operation graph with their supported fusion pattern. If
there is a match, then that particular engine is deemed suitable for this use case. In addition, there are also runtime fusion engines to be made
available in the upcoming releases. Instead of passively matching the user graph, such engines actively walk the graph and assemble code blocks to
form a CUDA kernel and compile on the fly. Such runtime fusion engines are much more flexible in its range of support. However, because the
construction of the execution plans requires runtime compilation, the one-time CPU overhead is higher than the other engines.

Note: this is Halide "compute at"

\section*{Many efforts to automatically schedule key DNN operations}


EtVM Open Deep Learning Compiler Stack

\section*{}

Documentation | Contributors | Community | Release Notes
TVM is a compiler stack for deep learning systems. It is designed to close the gap between the productivity-focused deep learning frameworks, and the performance- and efficiency-focused hardware backends. TVM works with deep learning frameworks to provide end to end compilation to different backends. Checkout the tvm stack homepage for more information.
```

NVIDIA TensorRT
Programmable Inference Accelerator

```

\section*{Use of low precision values}
- Many efforts to use low precision values for DNN weights and intermediate activations
- Eight and 16 bit values are common
- In the extreme case: 1-bit

XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks

Mohammad Rastegari \({ }^{\dagger}\), Vicente Ordonez \({ }^{\dagger}\), Joseph Redmon \({ }^{*}\), Ali Farhadi \({ }^{\dagger}{ }^{*}\)

> Allen Institute for \(\mathrm{AI}^{\dagger}\), University of Washington*
> \{mohammadr, vicenteor\}@allenai.org
> \{pjreddie, ali\}@cs.washington.edu

Abstract. We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-WeightNetworks, the filters are approximated with binary values resulting in \(32 \times\) memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in \(58 \times\) faster convolutional operations (in terms of number of the high precision operations) and \(32 \times\) memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is the same as the full-precision AlexNet. We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than \(16 \%\) in top-1 accuracy. Our code is available at: http://allenai.org/plato/xnornet.

\section*{Reminder: energy cost of data access}

Significant fraction of energy expended moving data to processor ALUs
\begin{tabular}{lll}
\hline Operation & Energy [pJ] & Relative Cost \\
\hline 32 bit int ADD & 0.1 & 1 \\
32 bit float ADD & 0.9 & 9 \\
32 bit Register File & 1 & 10 \\
32 bit int MULT & 3.1 & 31 \\
32 bit float MULT & 3.7 & 37 \\
32 bit SRAM Cache & 5 & 50 \\
32 bit DRAM Memory & \(\mathbf{6 4 0}\) & \(\mathbf{6 4 0 0}\) \\
\hline
\end{tabular}

\footnotetext{
Estimates for 45 nm process
}
[Source: Mark Horowitz]

\section*{Is there an opportunity for compression?}

\section*{"Pruning" (sparsifying) a network}


\section*{"Pruning" (sparsifying) a network}


Idea: prune connections with near zero weight

Remove entire units if all connections are pruned.

\section*{Representing "sparsified" networks}

Step 1: prune low-weight links (iteratively retrain network, then prune)
- Store weight matrices in compressed sparse row (CSR) format


Reduce storage over head of indices by delta encoding them to fit in 8 bits
```

Indices
Value
1.8 0.5 2.1

```

\section*{Efficiently storing the surviving connections}

Step 2: Weight sharing: make surviving connections share a small set of weights
- Cluster weights via k-means clustering
- Compress weights by only storing index of assigned cluster (lg(k) bits)
- This is a form of lossy compression


Step 3: Huffman encode quantized weights and CSR indices (lossless compression)

\section*{VGG-16 sparsification}

\section*{Large savings in fully connected layers due to combination of pruning, quantization, Huffman encoding *}
\begin{tabular}{l|llllllll}
\hline Layer & \#Weights & \begin{tabular}{l} 
Weights\% \\
\((\mathrm{P})\)
\end{tabular} & \begin{tabular}{l} 
Weigh \\
bits \\
\((\mathrm{P}+\mathrm{Q})\)
\end{tabular} & \begin{tabular}{l} 
Weight \\
bits \\
\((\mathrm{P}+\mathrm{Q}+\mathrm{H})\)
\end{tabular} & \begin{tabular}{l} 
Index \\
bits \\
\((\mathrm{P}+\mathrm{Q})\)
\end{tabular} & \begin{tabular}{l} 
Index \\
bits \\
\((\mathrm{P}+\mathrm{Q}+\mathrm{H})\)
\end{tabular} & \begin{tabular}{l} 
Compress \\
rate \\
\((\mathrm{P}+\mathrm{Q})\)
\end{tabular} & \begin{tabular}{l} 
Compress \\
rate \\
\((\mathrm{P}+\mathrm{Q}+\mathrm{H})\)
\end{tabular} \\
\hline conv1_1 & 2 K & \(58 \%\) & 8 & 6.8 & 5 & 1.7 & \(40.0 \%\) & \(29.97 \%\) \\
conv1_2 & 37 K & \(22 \%\) & 8 & 6.5 & 5 & 2.6 & \(9.8 \%\) & \(6.99 \%\) \\
conv2_1 & 74 K & \(34 \%\) & 8 & 5.6 & 5 & 2.4 & \(14.3 \%\) & \(8.91 \%\) \\
conv2_2 & 148 K & \(36 \%\) & 8 & 5.9 & 5 & 2.3 & \(14.7 \%\) & \(9.31 \%\) \\
conv3_1 & 295 K & \(53 \%\) & 8 & 4.8 & 5 & 1.8 & \(21.7 \%\) & \(11.15 \%\) \\
conv3_2 & 590 K & \(24 \%\) & 8 & 4.6 & 5 & 2.9 & \(9.7 \%\) & \(5.67 \%\) \\
conv3_3 & 590 K & \(42 \%\) & 8 & 4.6 & 5 & 2.2 & \(17.0 \%\) & \(8.96 \%\) \\
conv4_1 & 1 M & \(32 \%\) & 8 & 4.6 & 5 & 2.6 & \(13.1 \%\) & \(7.29 \%\) \\
conv4_2 & 2 M & \(27 \%\) & 8 & 4.2 & 5 & 2.9 & \(10.9 \%\) & \(5.93 \%\) \\
conv4_3 & 2 M & \(34 \%\) & 8 & 4.4 & 5 & 2.5 & \(14.0 \%\) & \(7.47 \%\) \\
conv5_1 & 2 M & \(35 \%\) & 8 & 4.7 & 5 & 2.5 & \(14.3 \%\) & \(8.00 \%\) \\
conv5_2 & 2 M & \(29 \%\) & 8 & 4.6 & 5 & 2.7 & \(11.7 \%\) & \(6.52 \%\) \\
conv5_3 & 2 M & \(36 \%\) & 8 & 4.6 & 5 & 2.3 & \(14.8 \%\) & \(7.79 \%\) \\
\hline fc6 & 103 M & \(4 \%\) & 5 & 3.6 & 5 & 3.5 & \(1.6 \%\) & \(1.10 \%\) \\
fc7 & 17 M & \(4 \%\) & 5 & 4 & 5 & 4.3 & \(1.5 \%\) & \(1.25 \%\) \\
fc8 & 4 M & \(23 \%\) & 5 & 4 & 5 & 3.4 & \(7.1 \%\) & \(5.24 \%\) \\
\hline Total & 138 M & \(7.5 \%(13 \times)\) & 6.4 & 4.1 & 5 & 3.1 & \(3.2 \%(31 \times)\) & \(2.05 \%(49 \times)\) \\
\hline
\end{tabular}

\footnotetext{
\(P=\) connection pruning (prune low weight connections)
Q = quantize surviving weights (using shared weights)
\(H\) = Huffman encode
}

ImageNet Image Classification Performance Top-1 Error Top-5 Error Model size
\begin{tabular}{l|cc|c|c}
\multicolumn{3}{c}{ Top-1 Error } & Top-5 Error & \multicolumn{2}{c}{ Model size } \\
\hline VGG-16 Ref & \(31.50 \%\) & \(11.32 \%\) & 552 MB & \\
VGG-16 Compressed & \(31.17 \%\) & \(10.91 \%\) & \(\mathbf{1 1 . 3} \mathrm{MB}\) & \(\mathbf{4 9} \times\) \\
\hline
\end{tabular}
* Benefits of automatic pruning apply mainly to fully connected layers, but unfortunately many modern networks are dominated by costs of convolutional layers

\title{
DNN optimization is a great example of non-domain-specific vs. domain-specific approach to innovation
}

\section*{Leveraging domain-knowledge: more efficient topologies (aka better algorithm design)}
- Original DNNs for image recognition where over-provisioned
- Large filters, many filters
- Modern DNNs designs are hand-designed to be sparser

SqueezeNet: [landola 2017] Reduced number of parameters in AlexNet by 50x,


Inception v1 (GoogleLeNet) — \(\mathbf{2 7}\) total layers, 7M parameters


ResNet (34 layer version)


\section*{ResNet}

34-layer plain \(\quad\) 34-layer residual


Figure 10. The schema for \(35 \times 35\) grid (Inception-ResNet-A) module of Inception-ResNet-v1 network.

\section*{Effect of topology innovation}




\section*{Improving accuracy/cost (image classification)}
\begin{tabular}{|c|c|c|c|c|}
\hline & ImageNet Top-1 Accuracy & Num Params & Cost/image (MADDs) & \\
\hline VGG-16 & 71.5\% & 138M & 15B & [2014] \\
\hline GoogleNet & 70\% & 6.8M & 1.5B & [2015] \\
\hline ResNet-18 & 73\%* & 11.7M & 1.8B & [2016] \\
\hline MobileNet-224 & 70.5\% & 4.2M & 0.6B & [2017] \\
\hline
\end{tabular}
* 10-crop results (ResNet 1-crop results are similar to other DNNs in this table)

\section*{MobileNet}

\section*{Factor NUM_FILTERS 3x3xNUM_CHANNELS convolutions into:}
- NUM_CHANNELS \(3 \times 3 \times 1\) convolutions for each input channel
- And NUM_FILTERS 1x1xNUM_CHANNELS convolutions to combine the results

\begin{tabular}{l|l|l}
\multicolumn{2}{r}{ Table 1. MobileNet Body Architecture } \\
\hline \hline Type / Stride & Filter Shape & Input Size \\
\hline Conv / s2 & \(3 \times 3 \times 3 \times 32\) & \(224 \times 224 \times 3\) \\
\hline Conv dw / s1 & \(3 \times 3 \times 32 \mathrm{dw}\) & \(112 \times 112 \times 32\) \\
\hline Conv / s1 & \(1 \times 1 \times 32 \times 64\) & \(112 \times 112 \times 32\) \\
\hline Conv dw / s2 & \(3 \times 3 \times 64 \mathrm{dw}\) & \(112 \times 112 \times 64\) \\
\hline Conv / s1 & \(1 \times 1 \times 64 \times 128\) & \(56 \times 56 \times 64\) \\
\hline Conv dw / s1 & \(3 \times 3 \times 128 \mathrm{dw}\) & \(56 \times 56 \times 128\) \\
\hline Conv / s1 & \(1 \times 1 \times 128 \times 128\) & \(56 \times 56 \times 128\) \\
\hline Conv dw / s2 & \(3 \times 3 \times 128 \mathrm{dw}\) & \(56 \times 56 \times 128\) \\
\hline Conv / s1 & \(1 \times 1 \times 128 \times 256\) & \(28 \times 28 \times 128\) \\
\hline Conv dw / s1 & \(3 \times 3 \times 256 \mathrm{dw}\) & \(28 \times 28 \times 256\) \\
\hline Conv / s1 & \(1 \times 1 \times 256 \times 256\) & \(28 \times 28 \times 256\) \\
\hline Conv dw / s2 & \(3 \times 3 \times 256 \mathrm{dw}\) & \(28 \times 28 \times 256\) \\
\hline Conv / s1 & \(1 \times 1 \times 256 \times 512\) & \(14 \times 14 \times 256\) \\
\hline \multicolumn{1}{c}{ Conv dw / s1 } & \(3 \times 3 \times 512 \mathrm{dw}\) & \(14 \times 14 \times 512\) \\
\hline Conv / s1 & \(1 \times 1 \times 512 \times 512\) & \(14 \times 14 \times 512\) \\
\hline Conv dw / s2 & \(3 \times 3 \times 512 \mathrm{dw}\) & \(14 \times 14 \times 512\) \\
\hline Conv / s1 & \(1 \times 1 \times 512 \times 1024\) & \(7 \times 7 \times 512\) \\
\hline Conv dw / s2 & \(3 \times 3 \times 1024 \mathrm{dw}\) & \(7 \times 7 \times 1024\) \\
\hline Conv / s1 & \(1 \times 1 \times 1024 \times 1024\) & \(7 \times 7 \times 1024\) \\
\hline Avg Pool / s1 & Pool \(7 \times 7\) & \(7 \times 7 \times 1024\) \\
\hline FC / s1 & \(1024 \times 1000\) & \(1 \times 1 \times 1024\) \\
\hline Softmax /s1 & Classifier & \(1 \times 1 \times 1000\) \\
\hline
\end{tabular}

Image classification (ImageNet) Comparison to Common DNNs
\begin{tabular}{cccc|} 
Model & \begin{tabular}{c} 
ImageNet \\
Accuracy
\end{tabular} & \begin{tabular}{c} 
Million \\
Mult-Adds
\end{tabular} & \begin{tabular}{c} 
Million \\
Parameters
\end{tabular} \\
\hline 1.0 MobileNet-224 & \(70.6 \%\) & 569 & 4.2 \\
\hline GoogleNet & \(69.8 \%\) & 1550 & 6.8 \\
VGG 16 & \(71.5 \%\) & 15300 & 138
\end{tabular}

\section*{Image classification (ImageNet) Comparison to Other Compressed DNNs}
\begin{tabular}{|cccc|}
\hline Model & \begin{tabular}{c} 
ImageNet \\
Accuracy
\end{tabular} & \begin{tabular}{c} 
Million \\
Mult-Adds
\end{tabular} & \begin{tabular}{c} 
Million \\
Parameters
\end{tabular} \\
\hline 0.50 MobileNet-160 & \(60.2 \%\) & 76 & 1.32 \\
\hline Squeezenet & \(57.5 \%\) & 1700 & 1.25 \\
AlexNet & \(57.2 \%\) & 720 & 60 \\
\hline
\end{tabular}

\section*{Model optimization techniques}
- Manually designing better models
- Common parameters: depth of network, width of filters, number of filters per layer, convolutional stride, etc.
- Good scheduling of performance-critical operations (layers)
- Loop blocking/tiling, fusion
- Typically optimized manually by humans (but significant research efforts to automate scheduling)
- Compressing models
- Lower bit precision
- Automatic sparsification/pruning
- Automatically discovering efficient model topologies (architecture search)

\section*{DNN architecture search}
- Learn an efficient DNN topology along with associated weights
- Example: progressive neural architecture search [Liu et al. 18]
"Block" \(=\) (input1, input2, op1, op2)


Eight possible operations:
\(3 \times 3\) depthwise-separable conv identity
\(5 \times 5\) depthwise-separable conv \(3 \times 3\) average pool
\(7 \times 7\) depthwise-separable conv \(3 \times 3\) max pool
\(1 \times 7\) followed by \(7 \times 1\) conv \(3 \times 3\) dilated conv

\section*{Architecture search space}

Cells are DAGs of \(\boldsymbol{B}\) blocks


DNNs are sequences of \(N\) cells


Cells have one output, can receive input from all prior cells

\section*{Progressive neural architecture search results}
- Automatic search was able to find model architectures that yielded similar/better accuracy to hand designed models (and comparable costs)
\begin{tabular}{lcccc}
\hline Model & \multicolumn{4}{c}{ Params Mult-Adds Top-1 } \\
\hline MobileN-5 \\
\hline ShuffleNet \((224[14]\) & 4.2 M & 569 M & 70.6 & 89.5 \\
\hline NASNet-A \((N=4, F=44)[41]\) & 5.3 M & 564 M & 74.0 & 91.6 \\
AmoebaNet-B \((N=3, F=62)[27]\) & 5.3 M & 555 M & 74.0 & 91.5 \\
AmoebaNet-A \((N=4, F=50)[27]\) & 5.1 M & 555 M & 74.5 & 92.0 \\
AmoebaNet-C \((N=4, F=50)[27]\) & 6.4 M & 570 M & 75.7 & 92.4 \\
\hline PNASNet-5 \((N=3, F=54)\) & 5.1 M & 588 M & 74.2 & 91.9 \\
\hline
\end{tabular}

\title{
Why might a GPU be a good platform for DNN evaluation?
}
consider:
arithmetic intensity, SIMD, data-parallelism, memory bandwidth requirements

\section*{Deep neural networks on GPUs}
- Many high-performance DNN implementations target GPUs
- High arithmetic intensity computations (computational characteristics similar to dense matrix-matrix multiplication)
- Benefit from flop-rich GPU architectures
- Highly-optimized library of kernels exist for GPUs (cuDNN)


\title{
Why might a GPU be a sub-optimal platform for DNN evaluation?
}
consider: is a general purpose processor needed?

\section*{Hardware acceleration of DNN inference/training}


\section*{Investment in Al hardware}

SambaNova Systems Raises \$676M in Series D, Surpasses \$5 Valuation and Becomes World's Best-Funded AI Startup
SoftBank Vision Fund 2 leads round bocking breakthrough plafform that delivers unprecedented AI capabaility
and accessibility to co customers worldwide
 managed by BlackRock, Intel Capital, GV formerly Google Vi. We're here to revolutoinize the Al market, ot this round groatly accelerates that
 We're here to revolutionize the Al market, and this round gre founder and CEO. "TTaditional CPU and GPU architectures \(h\) he To solve humanitys greatest technology challenges, a new af
to see a weath of prudent investors validate that."

Sambanova's flagship offering is Dataltow-as-a-Senice (Daa
Artificial intelligence chip startup Cerebras Systems claims it has the "world's jump-start enterprisis-level Al inituatives, aumenting organ,

The Los Altos, Calif.-based startup introduced its CS-1 system at the Supercomputing conference in Denver last week after raising more than \$200 million in funding from investors, most recently with an \(\$ 88\) million Series D round that was raised in November 2018, according to Andrew Feldman, the founder and CEO of Cerebras who was previously an executive at AMD.


9roq

\section*{Intel Acquires Artificial Intelligence Chipmaker Habana Labs}

Combination Advances Intel's AI Strategy, Strengthens Portfolio of AI Accelerators for the Data Center
SANTA CLARA Calif., Dec. 16, 2019 - Intel Corporation today announced that it has acquired Habana Labs, an Israel-based developer of programmable deep learning accelerators for the data center for approximately \(\$ 2\) billion. The combination strengthens Intel's artificial intelligence (AI) portfolio and accelerates its efforts in the nascent, fast-growing Al silicon market, which Intel expects to be greater than \(\$ 25\) billion by \(2024^{1}\).
"This acquisition advances our Al strategy, which is to provide customers with solutions to fit every performance need - from the intelligent edge to the data center," said Navin Shenoy, executive vice president and general manager of the Data Platforms Group at Intel. "More specifically, Habana turbo-charges our Al offerings for the data center with a high-performance training processor family and a standards-based programming environment to address evolving
Al workloads."

\section*{Recall: properties of GPUs}
- "Compute rich": packed densely with processing elements
- Good for compute-bound applications
- Good, because dense-matrix multiplication and DNN convolutional layers (when implemented properly) are compute bound
- But recall cost of instruction stream processing and control in a programmable processor:


Efficient Embedded Computing [Dally et al. 08]
[Figure credit Eric Chung]

\section*{One solution: more complex instructions}
- Fused multiply add (ax + b)
- 4-component dot product \(x=A \operatorname{dot} B\)
- 4x4 matrix multiply
- AB + C for \(4 \times 4\) matrices \(A, B, C\)
- Key principle: amortize cost of instruction stream processing across many operations of a single complex instruction

\section*{Volta GPU}

\section*{Each SM core has:}

64 fp32 ALUs (mul-add)
32 fp64 ALUs
8 "tensor cores"
Execute 4x4 matrix mul-add instr
\(A \times B+C\) for \(4 x 4\) matrices \(A, B, C\)
A, B stored as fp 16 , accumulation with fp 32 C

There are 80 SM cores in the GV100 GPU:
5,120 fp32 mul-add ALUs
640 tensor cores
6 MB of L2 cache
1.5 GHz max clock
\(=15.7\) TFLOPs fp32
\(=125\) TFLOPs (fp16/32 mixed) in tensor cores

\section*{Efficiency estimates *}
- Estimated overhead of programmability (instruction stream, control, etc.)
- Half-precision FMA (fused multiply-add) 2000\%
- Half-precision DP4 (vec4 dot product) 500\%
- Half-precision MMA (matrix-matrix multiply + accumulate) 27\%


NVIDIA Xavier (SoC for automotive domain)
Features a Computer Vision Accelerator (CVA), a custom module for deep learning acceleration (large matrix multiply unit)

But only 2x more efficient than Volta MMA instruction despite being highly specialized component. (includes optimization of gating multipliers if either operand is zero)

\footnotetext{
* Estimates by Bill Dally using academic numbers, SysML talk, Feb 2018
}

\section*{Summary: efficiently evaluating deep nets}
- Workload characteristics for image processing DNNs:
- Convlayers: high arithmetic intensity, significant portion of cost when evaluating DNNs for computer vision
- Significant interest in reducing size of DNNs for more efficient evaluation
- Algorithmic techniques (better DNN model architectures) are responsible for significant speedups in recent years
- Expect increasing use of automated model search techniques
- Huge innovation in specialized hardware accelerators

\section*{Course Wrap Up}

\section*{For the foreseeable future, the primary way to obtain higher performance computing hardware is through a combination of increased parallelism and hardware specialization.}


Intel Core i7 CPU + integrated GPU and media


Intel Xeon Phi
72 cores, 16 -wide SIMD, 4 -way multi-threading


NVIDIA Maxwell GPU (single SMM core) 32 wide SIMD
2048 CUDA/core threads per SMM


FPGA
(reconfigurable logic)


Apple A9 Heterogeneous SoC multi-core CPU + multicore GPU + media ASICs

\section*{Today's software is surprisingly inefficient compared to the capability of modern machines}

A lot of performance is currently left on the table (increasingly so as machines get more complex, and parallel processing capability grows)

Extracting this performance stands to provide a notable impact on many compute-intensive fields (or, more importantly enable new applications of computing!)

Given current software programming systems and tools, understanding how a parallel machine works is important to achieving high performance.

A major challenge going forward is making it simpler for programmers to extract performance on these complex machines.

This is very important given how exciting (and efficiency-critical) the next generation of computing applications are likely to be.


\section*{Key issues we have addressed in this course}

\section*{Identifying parallelism}
(or conversely, identifying dependencies)

\section*{Efficiently scheduling parallelism}

\section*{1. Achieving good workload balance}
2. Overcoming communication constraints:

Bandwidth limits, dealing with latency, synchronization Exploiting data/computation locality = efficiently managing state!
3. Scheduling under heterogeneity (using the right processor for the job)

We discussed these issues at many scales and in many contexts
Heterogeneous mobile SoC
Single chip, multi-core CPU
Multi-core GPU
CPU+GPU connected via bus Clusters of machines
Large scale, multi-node supercomputers

\section*{Key issues we have addressed in this course}

\author{
Abstractions for thinking about efficient code \\ Data parallel thinking \\ Functional parallelism \\ Transactions \\ Tasks
}

\section*{How throughput-oriented hardware works}

Multiple cores, hardware-threads, SIMD
Specialization to key domains

\section*{After taking this course, you can play a role in ongoing Stanford research in parallel computing!}

\section*{Try CURIS/independent study/research!}

\section*{Why research (or independent study)?}
- Depth can be fun. You will learn way more about a topic than in any class.
- You think your undergrad/MS peers are amazingly smart? Come see our Ph.D. students! (you get to work side-by-side with them and with faculty). Imagine what level you might rise to.
- It's fun to be on the cutting edge. Industry might not even know about what you are working on. (imagine how much more valuable you are if you can teach them)
- It widens your mind as to what might be possible with tech.

\section*{Example: what my own Ph.D. students are working on these days...}
- Generating efficient code from DSLs for image processing or deep learning
- Designing a platform to render frames at 10,000 fps per GPU to rapidly create training data for reinforcement learning
- Human-in-the-loop systems for mining large image databases for training data (can a human, a big monitor, and a supercomputer create accurate DNN models in an afternoon?)
- Parallel rendering using 1000 's of CPU cores in the cloud
- Designing more efficient DNNs
- New applications of analyzing video data at scale
- Analyzing broadcast sports video to make virtual characters that move and play like real athletes (virtual Roger Federer)
- Analyzing 230,000 hours of TV news video to understand representation and bias in the news.

\section*{Maybe you might like research and decide you want to go to grad school}

Pragmatic comment: Without question, the number one way to get into a top grad school is to receive a strong letter of recommendation from faculty members. You get that letter only from being part of a research team for an extended period of time.

DWIC letter: ("did well in class" letter) What you get when you ask for a letter from a faculty member who you didn't do research with, but got an ' \(A\) ' in their class. This letter is essentially thrown out by the Ph.D. admissions committee at good schools.

\section*{A very good reference}

CMU Professor Mor Harchol-Balter's writeup:
"Applying to Ph.D. Programs in Computer Science"
http://www.cs.cmu.edu/~harchol/gradschooltalk.pdf

\section*{HYPOTHESIS:}

CS classes alone may not be the most effective way to maximize your experience at Stanford and opportunities afterward.

It may not be the best way to get a competitive job.
It may not be the best way to get the coolest jobs.
It may not be the best way to prepare yourself have the most impact in a future job or in the world at large.

\section*{A conventional path...}


\section*{An alternative path...}

\section*{Amazing CS student}


Takes fewer classes, but does some crazy extra credits in CS149. (really interested in parallel programming)


\section*{Think bigger, think broader}

\section*{You are fortunate. You are smart, talented, and hard-working. \\ You are in an amazing environment at Stanford.}

How can you maximize that opportunity while you are here?
The mechanisms are in place, if they aren't, we'll help you create them:
Course projects
Research
Independent study
Entrepreneurship
The biggest sign you are in the "real-world" isn't when you are paying your own bills, showing up to work on time, or ensuring your code passes regressions... it is asking your own questions and making your own decisions.

And there's a lot more to decide on than classes.

\title{
Or in other words*... there are "grades" you can get at Stanford that are much higher than \(\mathrm{A} / \mathrm{A}+\mathrm{\prime}\).
}

Thanks for being a great class!
Thanks for putting in the work. (in the face of stressful times)
Stay safe. Wear a mask.

\section*{Have a great break!}```

